PyTorch
# VITS [VITS (Variational Inference with adversarial learning for end-to-end Text-to-Speech)](https://hf.co/papers/2106.06103) is a end-to-end speech synthesis model, simplifying the traditional two-stage text-to-speech (TTS) systems. It's unique because it directly synthesizes speech from text using variational inference, adversarial learning, and normalizing flows to produce natural and expressive speech with diverse rhythms and intonations. You can find all the original VITS checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=mms-tts) organization. > [!TIP] > Click on the VITS models in the right sidebar for more examples of how to apply VITS. The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class. ```python import torch from transformers import pipeline, set_seed from scipy.io.wavfile import write set_seed(555) pipe = pipeline( task="text-to-speech", model="facebook/mms-tts-eng", torch_dtype=torch.float16, device=0 ) speech = pipe("Hello, my dog is cute") # Extract audio data and sampling rate audio_data = speech["audio"] sampling_rate = speech["sampling_rate"] # Save as WAV file write("hello.wav", sampling_rate, audio_data.squeeze()) ``` ```python import torch import scipy from IPython.display import Audio from transformers import AutoTokenizer, VitsModel, set_seed tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") model = VitsModel.from_pretrained("facebook/mms-tts-eng", torch_dtype=torch.float16).to("cuda") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt").to("cuda") set_seed(555) with torch.no_grad(): outputs = model(**inputs) waveform = outputs.waveform[0] scipy.io.wavfile.write("hello.wav", rate=model.config.sampling_rate, data=waveform) # display in Colab notebook Audio(waveform, rate=model.config.sampling_rate) ``` ## Notes - Set a seed for reproducibility because VITS synthesizes speech non-deterministically. - For languages with non-Roman alphabets (Korean, Arabic, etc.), install the [uroman](https://github.com/isi-nlp/uroman) package to preprocess the text inputs to the Roman alphabet. You can check if the tokenizer requires uroman as shown below. ```py # pip install -U uroman from transformers import VitsTokenizer tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") print(tokenizer.is_uroman) ``` If your language requires uroman, the tokenizer automatically applies it to the text inputs. Python >= 3.10 doesn't require any additional preprocessing steps. For Python < 3.10, follow the steps below. ```bash git clone https://github.com/isi-nlp/uroman.git cd uroman export UROMAN=$(pwd) ``` Create a function to preprocess the inputs. You can either use the bash variable `UROMAN` or pass the directory path directly to the function. ```py import torch from transformers import VitsTokenizer, VitsModel, set_seed import os import subprocess tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor") model = VitsModel.from_pretrained("facebook/mms-tts-kor") def uromanize(input_string, uroman_path): """Convert non-Roman strings to Roman using the `uroman` perl package.""" script_path = os.path.join(uroman_path, "bin", "uroman.pl") command = ["perl", script_path] process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Execute the perl command stdout, stderr = process.communicate(input=input_string.encode()) if process.returncode != 0: raise ValueError(f"Error {process.returncode}: {stderr.decode()}") # Return the output as a string and skip the new-line character at the end return stdout.decode()[:-1] text = "이봐 무슨 일이야" uromanized_text = uromanize(text, uroman_path=os.environ["UROMAN"]) inputs = tokenizer(text=uromanized_text, return_tensors="pt") set_seed(555) # make deterministic with torch.no_grad(): outputs = model(inputs["input_ids"]) waveform = outputs.waveform[0] ``` ## VitsConfig [[autodoc]] VitsConfig ## VitsTokenizer [[autodoc]] VitsTokenizer - __call__ - save_vocabulary ## VitsModel [[autodoc]] VitsModel - forward