PyTorch FlashAttention SDPA
# Falcon [Falcon](https://huggingface.co/papers/2311.16867) is a family of large language models, available in 7B, 40B, and 180B parameters, as pretrained and instruction tuned variants. This model focuses on scaling pretraining over three categories, performance, data, and hardware. Falcon uses multigroup attention to significantly reduce inference memory requirements and rotary positional embeddings (RoPE). These models are pretrained on [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality and deduplicated 5T token dataset. You can find all the original Falcon checkpoints under the [Falcon](https://huggingface.co/collections/tiiuae/falcon-64fb432660017eeec9837b5a) collection. > [!TIP] > Click on the Falcon models in the right sidebar for more examples of how to apply Falcon to different language tasks. The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line. ```py import torch from transformers import pipeline pipeline = pipeline( task="text-generation", model="tiiuae/falcon-7b-instruct", torch_dtype=torch.bfloat16, device=0 ) pipeline( "Write a short poem about coding", max_length=100, do_sample=True, temperature=0.7 ) ``` ```py import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct") model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-7b-instruct", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", ) input_ids = tokenizer("Write a short poem about coding", return_tensors="pt").to("cuda") output = model.generate(**input_ids) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` ```bash # pip install -U flash-attn --no-build-isolation transformers chat tiiuae/falcon-7b-instruct --torch_dtype auto --attn_implementation flash_attention_2 --device 0 ``` Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b") model = AutoModelForCausalLM.from_pretrained( "tiiuae/falcon-7b", torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config, ) inputs = tokenizer("In quantum physics, entanglement means", return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Notes - If you're upgrading from an older custom code checkpoint, remember to convert it to the official Transformers format for better stability and performance using the conversion script located in the [Falcon model directory](https://github.com/huggingface/transformers/tree/main/src/transformers/models/falcon). ```bash python convert_custom_code_checkpoint.py --checkpoint_dir my_model ``` ## FalconConfig [[autodoc]] FalconConfig - all ## FalconModel [[autodoc]] FalconModel - forward ## FalconForCausalLM [[autodoc]] FalconForCausalLM - forward ## FalconForSequenceClassification [[autodoc]] FalconForSequenceClassification - forward ## FalconForTokenClassification [[autodoc]] FalconForTokenClassification - forward ## FalconForQuestionAnswering [[autodoc]] FalconForQuestionAnswering - forward