# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import Speech2TextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import require_sentencepiece, require_tokenizers from .test_tokenization_common import TokenizerTesterMixin SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp FR_CODE = 5 ES_CODE = 10 @require_sentencepiece @require_tokenizers class SpeechToTextTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = Speech2TextTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() spm_model = sp.SentencePieceProcessor() spm_model.Load(SAMPLE_SP) vocab = ["", "", "", ""] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(spm_model))] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def test_full_tokenizer(self): tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [289, 50, 14, 174, 386], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, # fmt: off [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."], # fmt: on ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, # fmt: off [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "", "."], # fmt: on ) @require_sentencepiece class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase): checkpoint_name = "valhalla/s2t_mustc_multilinguial_medium" french_text = "C'est trop cool" spanish_text = "Esto es genial" @classmethod def setUpClass(cls): cls.tokenizer: Speech2TextTokenizer = Speech2TextTokenizer.from_pretrained(cls.checkpoint_name) return cls def check_language_codes(self): self.assertEqual(self.tokenizer.lang_code_to_id["pt"], 4) self.assertEqual(self.tokenizer.lang_code_to_id["ru"], 6) self.assertEqual(self.tokenizer.lang_code_to_id["it"], 9) self.assertEqual(self.tokenizer.lang_code_to_id["de"], 11) def test_tokenizer_decode_ignores_language_codes(self): self.assertIn(ES_CODE, self.tokenizer.all_special_ids) generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2] result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_spanish) self.assertNotIn(self.tokenizer.eos_token, result) def test_tokenizer_adds_special_tokens(self): self.tokenizer.tgt_lang = "fr" encoded = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0], FR_CODE) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id) def test_tgt_lang_setter(self): self.tokenizer.tgt_lang = "fr" self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE]) self.tokenizer.tgt_lang = "es" self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE])