# Swin Transformer V2 ## Overview The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. The abstract from the paper is the following: *Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.* Tips: - One can use the [`AutoFeatureExtractor`] API to prepare images for the model. This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik). The original code can be found [here](https://github.com/microsoft/Swin-Transformer). ## Swinv2Config [[autodoc]] Swinv2Config ## Swinv2Model [[autodoc]] Swinv2Model - forward ## Swinv2ForMaskedImageModeling [[autodoc]] Swinv2ForMaskedImageModeling - forward ## Swinv2ForImageClassification [[autodoc]] transformers.Swinv2ForImageClassification - forward