# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import random import tempfile from pathlib import Path from typing import Optional import numpy as np from transformers.models.auto.processing_auto import processor_class_from_name from transformers.processing_utils import Unpack from transformers.testing_utils import ( check_json_file_has_correct_format, require_torch, require_vision, ) from transformers.utils import is_vision_available global_rng = random.Random() if is_vision_available(): from PIL import Image def prepare_image_inputs(): """This function prepares a list of PIL images""" image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_vision class ProcessorTesterMixin: processor_class = None text_input_name = "input_ids" images_input_name = "pixel_values" videos_input_name = "pixel_values_videos" def prepare_processor_dict(self): return {} def get_component(self, attribute, **kwargs): assert attribute in self.processor_class.attributes component_class_name = getattr(self.processor_class, f"{attribute}_class") if isinstance(component_class_name, tuple): component_class_name = component_class_name[0] component_class = processor_class_from_name(component_class_name) component = component_class.from_pretrained(self.tmpdirname, **kwargs) # noqa if "tokenizer" in attribute and not component.pad_token: component.pad_token = "[TEST_PAD]" if component.pad_token_id is None: component.pad_token_id = 0 return component def prepare_components(self): components = {} for attribute in self.processor_class.attributes: component = self.get_component(attribute) components[attribute] = component return components def get_processor(self): components = self.prepare_components() processor = self.processor_class(**components, **self.prepare_processor_dict()) return processor def prepare_text_inputs(self, batch_size: Optional[int] = None): if batch_size is None: return "lower newer" if batch_size < 1: raise ValueError("batch_size must be greater than 0") if batch_size == 1: return ["lower newer"] return ["lower newer", "upper older longer string"] + ["lower newer"] * (batch_size - 2) @require_vision def prepare_image_inputs(self, batch_size: Optional[int] = None): """This function prepares a list of PIL images for testing""" if batch_size is None: return prepare_image_inputs()[0] if batch_size < 1: raise ValueError("batch_size must be greater than 0") return prepare_image_inputs() * batch_size @require_vision def prepare_video_inputs(self): """This function prepares a list of numpy videos.""" video_input = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] * 8 image_inputs = [video_input] * 3 # batch-size=3 return image_inputs def test_processor_to_json_string(self): processor = self.get_processor() obj = json.loads(processor.to_json_string()) for key, value in self.prepare_processor_dict().items(): self.assertEqual(obj[key], value) self.assertEqual(getattr(processor, key, None), value) def test_processor_from_and_save_pretrained(self): processor_first = self.get_processor() with tempfile.TemporaryDirectory() as tmpdirname: saved_files = processor_first.save_pretrained(tmpdirname) if len(saved_files) > 0: check_json_file_has_correct_format(saved_files[0]) processor_second = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor_second.to_dict(), processor_first.to_dict()) for attribute in processor_first.attributes: attribute_first = getattr(processor_first, attribute) attribute_second = getattr(processor_second, attribute) # tokenizer repr contains model-path from where we loaded if "tokenizer" not in attribute: self.assertEqual(repr(attribute_first), repr(attribute_second)) # These kwargs-related tests ensure that processors are correctly instantiated. # they need to be applied only if an image_processor exists. def skip_processor_without_typed_kwargs(self, processor): # TODO this signature check is to test only uniformized processors. # Once all are updated, remove it. is_kwargs_typed_dict = False call_signature = inspect.signature(processor.__call__) for param in call_signature.parameters.values(): if param.kind == param.VAR_KEYWORD and param.annotation != param.empty: is_kwargs_typed_dict = ( hasattr(param.annotation, "__origin__") and param.annotation.__origin__ == Unpack ) if not is_kwargs_typed_dict: self.skipTest(f"{self.processor_class} doesn't have typed kwargs.") def test_tokenizer_defaults_preserved_by_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertEqual(inputs[self.text_input_name].shape[-1], 117) def test_image_processor_defaults_preserved_by_image_kwargs(self): """ We use do_rescale=True, rescale_factor=-1 to ensure that image_processor kwargs are preserved in the processor. We then check that the mean of the pixel_values is less than or equal to 0 after processing. Since the original pixel_values are in [0, 255], this is a good indicator that the rescale_factor is indeed applied. """ if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["image_processor"] = self.get_component( "image_processor", do_rescale=True, rescale_factor=-1 ) processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) def test_kwargs_overrides_default_tokenizer_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["tokenizer"] = self.get_component("tokenizer", padding="longest") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length" ) self.assertEqual(inputs[self.text_input_name].shape[-1], 112) def test_kwargs_overrides_default_image_processor_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_components["image_processor"] = self.get_component( "image_processor", do_rescale=True, rescale_factor=1 ) processor_components["tokenizer"] = self.get_component("tokenizer", max_length=117, padding="max_length") processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, do_rescale=True, rescale_factor=-1, return_tensors="pt") self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) def test_unstructured_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", do_rescale=True, rescale_factor=-1, padding="max_length", max_length=76, ) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertEqual(inputs[self.text_input_name].shape[-1], 76) def test_unstructured_kwargs_batched(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs(batch_size=2) image_input = self.prepare_image_inputs(batch_size=2) inputs = processor( text=input_str, images=image_input, return_tensors="pt", do_rescale=True, rescale_factor=-1, padding="longest", max_length=76, ) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertTrue( len(inputs[self.text_input_name][0]) == len(inputs[self.text_input_name][1]) and len(inputs[self.text_input_name][1]) < 76 ) def test_doubly_passed_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = [self.prepare_text_inputs()] image_input = self.prepare_image_inputs() with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, images_kwargs={"do_rescale": True, "rescale_factor": -1}, do_rescale=True, return_tensors="pt", ) def test_structured_kwargs_nested(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"do_rescale": True, "rescale_factor": -1}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertEqual(inputs[self.text_input_name].shape[-1], 76) def test_structured_kwargs_nested_from_dict(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor_kwargs = self.prepare_processor_dict() processor = self.processor_class(**processor_components, **processor_kwargs) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"do_rescale": True, "rescale_factor": -1}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertLessEqual(inputs[self.images_input_name][0][0].mean(), 0) self.assertEqual(inputs[self.text_input_name].shape[-1], 76) # text + audio kwargs testing @require_torch def test_tokenizer_defaults_preserved_by_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer(max_length=117, padding="max_length") elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") else: self.assertTrue(False, "Processor doesn't have get_tokenizer or get_component defined") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" raw_speech = floats_list((3, 1000)) inputs = processor(text=input_str, audio=raw_speech, return_tensors="pt") if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 117) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 117) @require_torch def test_kwargs_overrides_default_tokenizer_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer(max_length=117) elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer", max_length=117) if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" raw_speech = floats_list((3, 1000)) inputs = processor(text=input_str, audio=raw_speech, return_tensors="pt", max_length=112, padding="max_length") if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 112) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 112) @require_torch def test_unstructured_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer(max_length=117) elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer", max_length=117) if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" raw_speech = floats_list((3, 1000)) inputs = processor( text=input_str, audio=raw_speech, return_tensors="pt", padding="max_length", max_length=76, ) if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 76) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 76) @require_torch def test_doubly_passed_kwargs_audio(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer() elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer"] raw_speech = floats_list((3, 1000)) with self.assertRaises(ValueError): _ = processor( text=input_str, audio=raw_speech, audio_kwargs={"padding": "max_length"}, padding="max_length", ) @require_torch @require_vision def test_structured_kwargs_audio_nested(self): if "feature_extractor" not in self.processor_class.attributes: self.skipTest(f"feature_extractor attribute not present in {self.processor_class}") feature_extractor = self.get_component("feature_extractor") if hasattr(self, "get_tokenizer"): tokenizer = self.get_tokenizer() elif hasattr(self, "get_component"): tokenizer = self.get_component("tokenizer") if not tokenizer.pad_token: tokenizer.pad_token = "[TEST_PAD]" processor = self.processor_class(tokenizer=tokenizer, feature_extractor=feature_extractor) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer"] raw_speech = floats_list((3, 1000)) # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "text_kwargs": {"padding": "max_length", "max_length": 76}, "audio_kwargs": {"padding": "max_length", "max_length": 66}, } inputs = processor(text=input_str, audio=raw_speech, **all_kwargs) if "input_ids" in inputs: self.assertEqual(len(inputs["input_ids"][0]), 76) elif "labels" in inputs: self.assertEqual(len(inputs["labels"][0]), 76) # TODO: the same test, but for audio + text processors that have strong overlap in kwargs # TODO (molbap) use the same structure of attribute kwargs for other tests to avoid duplication def test_overlapping_text_kwargs_handling(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") processor_components = self.prepare_components() processor = self.processor_class(**processor_components) self.skip_processor_without_typed_kwargs(processor) input_str = self.prepare_text_inputs() image_input = self.prepare_image_inputs() with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, return_tensors="pt", padding="max_length", text_kwargs={"padding": "do_not_pad"}, ) def test_prepare_and_validate_optional_call_args(self): processor = self.get_processor() optional_call_args_name = getattr(processor, "optional_call_args", []) num_optional_call_args = len(optional_call_args_name) if num_optional_call_args == 0: self.skipTest("No optional call args") # test all optional call args are given optional_call_args = processor.prepare_and_validate_optional_call_args( *(f"optional_{i}" for i in range(num_optional_call_args)) ) self.assertEqual( optional_call_args, {arg_name: f"optional_{i}" for i, arg_name in enumerate(optional_call_args_name)} ) # test only one optional call arg is given optional_call_args = processor.prepare_and_validate_optional_call_args("optional_1") self.assertEqual(optional_call_args, {optional_call_args_name[0]: "optional_1"}) # test no optional call arg is given optional_call_args = processor.prepare_and_validate_optional_call_args() self.assertEqual(optional_call_args, {}) # test too many optional call args are given with self.assertRaises(ValueError): processor.prepare_and_validate_optional_call_args( *(f"optional_{i}" for i in range(num_optional_call_args + 1)) ) def test_chat_template_save_loading(self): processor = self.get_processor() existing_tokenizer_template = getattr(processor.tokenizer, "chat_template", None) processor.chat_template = "test template" with tempfile.TemporaryDirectory() as tmpdirname: processor.save_pretrained(tmpdirname) self.assertTrue(Path(tmpdirname, "chat_template.json").is_file()) self.assertFalse(Path(tmpdirname, "chat_template.jinja").is_file()) reloaded_processor = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor.chat_template, reloaded_processor.chat_template) # When we don't use single-file chat template saving, processor and tokenizer chat templates # should remain separate self.assertEqual(getattr(reloaded_processor.tokenizer, "chat_template", None), existing_tokenizer_template) with tempfile.TemporaryDirectory() as tmpdirname: processor.save_pretrained(tmpdirname, save_raw_chat_template=True) self.assertTrue(Path(tmpdirname, "chat_template.jinja").is_file()) self.assertFalse(Path(tmpdirname, "chat_template.json").is_file()) reloaded_processor = self.processor_class.from_pretrained(tmpdirname) self.assertEqual(processor.chat_template, reloaded_processor.chat_template) # When we save as single files, tokenizers and processors share a chat template, which means # the reloaded tokenizer should get the chat template as well self.assertEqual(reloaded_processor.chat_template, reloaded_processor.tokenizer.chat_template)