# coding=utf-8 # Copyright 2018 HuggingFace Inc.. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import sys from unittest.mock import patch import torch from transformers.file_utils import is_apex_available from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device SRC_DIRS = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-generation", "text-classification", "token-classification", "language-modeling", "multiple-choice", "question-answering", "summarization", "translation", "image-classification", "speech-recognition", "audio-classification", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_audio_classification import run_clm import run_generation import run_glue import run_image_classification import run_mlm import run_ner import run_qa as run_squad import run_speech_recognition_ctc import run_summarization import run_swag import run_translation logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f def get_results(output_dir): results = {} path = os.path.join(output_dir, "all_results.json") if os.path.exists(path): with open(path, "r") as f: results = json.load(f) else: raise ValueError(f"can't find {path}") return results def is_cuda_and_apex_available(): is_using_cuda = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() class ExamplesTests(TestCasePlus): def test_run_glue(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16") with patch.object(sys, "argv", testargs): run_glue.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) def test_run_clm(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_clm.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return if torch_device != "cuda": testargs.append("--no_cuda") with patch.object(sys, "argv", testargs): run_clm.main() result = get_results(tmp_dir) self.assertLess(result["perplexity"], 100) def test_run_mlm(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --prediction_loss_only --num_train_epochs=1 """.split() if torch_device != "cuda": testargs.append("--no_cuda") with patch.object(sys, "argv", testargs): run_mlm.main() result = get_results(tmp_dir) self.assertLess(result["perplexity"], 42) def test_run_ner(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu epochs = 7 if get_gpu_count() > 1 else 2 tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() if torch_device != "cuda": testargs.append("--no_cuda") with patch.object(sys, "argv", testargs): run_ner.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertLess(result["eval_loss"], 0.5) def test_run_squad(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=10 --warmup_steps=2 --do_train --do_eval --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(sys, "argv", testargs): run_squad.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_f1"], 30) self.assertGreaterEqual(result["eval_exact"], 30) def test_run_swag(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_swag.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=20 --warmup_steps=2 --do_train --do_eval --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(sys, "argv", testargs): run_swag.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.8) def test_generation(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"] if is_cuda_and_apex_available(): testargs.append("--fp16") model_type, model_name = ( "--model_type=gpt2", "--model_name_or_path=sshleifer/tiny-gpt2", ) with patch.object(sys, "argv", testargs + [model_type, model_name]): result = run_generation.main() self.assertGreaterEqual(len(result[0]), 10) @slow def test_run_summarization(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=50 --warmup_steps=8 --do_train --do_eval --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(sys, "argv", testargs): run_summarization.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_rouge1"], 10) self.assertGreaterEqual(result["eval_rouge2"], 2) self.assertGreaterEqual(result["eval_rougeL"], 7) self.assertGreaterEqual(result["eval_rougeLsum"], 7) @slow def test_run_translation(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_translation.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=50 --warmup_steps=8 --do_train --do_eval --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate --source_lang en_XX --target_lang ro_RO """.split() with patch.object(sys, "argv", testargs): run_translation.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_bleu"], 30) def test_run_image_classification(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_image_classification.py --output_dir {tmp_dir} --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --do_train --do_eval --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --remove_unused_columns False --overwrite_output_dir True --dataloader_num_workers 16 --metric_for_best_model accuracy --max_steps 10 --train_val_split 0.1 --seed 42 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16") with patch.object(sys, "argv", testargs): run_image_classification.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.8) def test_run_speech_recognition_ctc(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_speech_recognition_ctc.py --output_dir {tmp_dir} --model_name_or_path hf-internal-testing/tiny-random-wav2vec2 --dataset_name patrickvonplaten/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --eval_split_name validation --audio_column_name file --do_train --do_eval --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --remove_unused_columns False --overwrite_output_dir True --preprocessing_num_workers 16 --max_steps 10 --seed 42 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16") with patch.object(sys, "argv", testargs): run_speech_recognition_ctc.main() result = get_results(tmp_dir) self.assertLess(result["eval_loss"], result["train_loss"]) def test_run_audio_classification(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_audio_classification.py --output_dir {tmp_dir} --model_name_or_path hf-internal-testing/tiny-random-wav2vec2 --dataset_name anton-l/superb_demo --dataset_config_name ks --train_split_name test --eval_split_name test --audio_column_name file --label_column_name label --do_train --do_eval --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --remove_unused_columns False --overwrite_output_dir True --num_train_epochs 10 --max_steps 50 --seed 42 """.split() if is_cuda_and_apex_available(): testargs.append("--fp16") with patch.object(sys, "argv", testargs): run_audio_classification.main() result = get_results(tmp_dir) self.assertLess(result["eval_loss"], result["train_loss"])