PyTorch FlashAttention SDPA Tensor parallelism
# Qwen2 [Qwen2](https://huggingface.co/papers/2407.10671) is a family of large language models (pretrained, instruction-tuned and mixture-of-experts) available in sizes from 0.5B to 72B parameters. The models are built on the Transformer architecture featuring enhancements like group query attention (GQA), rotary positional embeddings (RoPE), a mix of sliding window and full attention, and dual chunk attention with YARN for training stability. Qwen2 models support multiple languages and context lengths up to 131,072 tokens. You can find all the official Qwen2 checkpoints under the [Qwen2](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f) collection. > [!TIP] > Click on the Qwen2 models in the right sidebar for more examples of how to apply Qwen2 to different language tasks. The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line using the instruction-tuned models. ```python import torch from transformers import pipeline pipe = pipeline( task="text-generation", model="Qwen/Qwen2-1.5B-Instruct", torch_dtype=torch.bfloat16, device_map=0 ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me about the Qwen2 model family."}, ] outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"][-1]['content']) ``` ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-1.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct") prompt = "Give me a short introduction to large language models." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to("cuda") generated_ids = model.generate( model_inputs.input_ids, cache_implementation="static", max_new_tokens=512, do_sample=True, temperature=0.7, top_k=50, top_p=0.95 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ```bash # pip install -U flash-attn --no-build-isolation transformers chat Qwen/Qwen2-7B-Instruct --torch_dtype auto --attn_implementation flash_attention_2 --device 0 ``` Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits. ```python # pip install -U flash-attn --no-build-isolation import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B") model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-7B", torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config, attn_implementation="flash_attention_2" ) inputs = tokenizer("The Qwen2 model family is", return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Notes - Ensure your Transformers library version is up-to-date. Qwen2 requires Transformers>=4.37.0 for full support. ## Qwen2Config [[autodoc]] Qwen2Config ## Qwen2Tokenizer [[autodoc]] Qwen2Tokenizer - save_vocabulary ## Qwen2TokenizerFast [[autodoc]] Qwen2TokenizerFast ## Qwen2Model [[autodoc]] Qwen2Model - forward ## Qwen2ForCausalLM [[autodoc]] Qwen2ForCausalLM - forward ## Qwen2ForSequenceClassification [[autodoc]] Qwen2ForSequenceClassification - forward ## Qwen2ForTokenClassification [[autodoc]] Qwen2ForTokenClassification - forward ## Qwen2ForQuestionAnswering [[autodoc]] Qwen2ForQuestionAnswering - forward