# coding=utf-8 # Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, DistilBert, XLNet, RoBERTa).""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import numpy as np import torch import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met import torch_xla.distributed.parallel_loader as pl import torch_xla.distributed.xla_multiprocessing as xmp from torch.utils.data import DataLoader, RandomSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForSequenceClassification, BertTokenizer, DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer, get_linear_schedule_with_warmup, ) from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors try: # Only tensorboardX supports writing directly to gs:// from tensorboardX import SummaryWriter except ImportError: from torch.utils.tensorboard import SummaryWriter logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassification, BertTokenizer), "xlnet": (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer), "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), } def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def get_sampler(dataset): if xm.xrt_world_size() <= 1: return RandomSampler(dataset) return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()) def train(args, train_dataset, model, tokenizer, disable_logging=False): """ Train the model """ if xm.is_master_ordinal(): # Only master writes to Tensorboard tb_writer = SummaryWriter(args.tensorboard_logdir) train_sampler = get_sampler(train_dataset) dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(dataloader) * args.train_batch_size) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per TPU core = %d", args.train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", (args.train_batch_size * args.gradient_accumulation_steps * xm.xrt_world_size()), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 loss = None model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=disable_logging) set_seed(args.seed) # Added here for reproductibility (even between python 2 and 3) for epoch in train_iterator: # tpu-comment: Get TPU parallel loader which sends data to TPU in background. train_dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device) epoch_iterator = tqdm(train_dataloader, desc="Iteration", total=len(dataloader), disable=disable_logging) for step, batch in enumerate(epoch_iterator): # Save model checkpoint. if args.save_steps > 0 and global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) logger.info("Saving model checkpoint to %s", output_dir) if xm.is_master_ordinal(): if not os.path.exists(output_dir): os.makedirs(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) # Barrier to wait for saving checkpoint. xm.rendezvous("mid_training_checkpoint") # model.save_pretrained needs to be called by all ordinals model.save_pretrained(output_dir) model.train() inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": # XLM, DistilBERT and RoBERTa don't use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) xm.optimizer_step(optimizer) scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics. results = {} if args.evaluate_during_training: results = evaluate(args, model, tokenizer, disable_logging=disable_logging) loss_scalar = loss.item() logger.info( "global_step: {global_step}, lr: {lr:.6f}, loss: {loss:.3f}".format( global_step=global_step, lr=scheduler.get_lr()[0], loss=loss_scalar ) ) if xm.is_master_ordinal(): # tpu-comment: All values must be in CPU and not on TPU device for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", loss_scalar, global_step) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.metrics_debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if xm.is_master_ordinal(): tb_writer.close() return global_step, loss.item() def evaluate(args, model, tokenizer, prefix="", disable_logging=False): """Evaluate the model""" if xm.is_master_ordinal(): # Only master writes to Tensorboard tb_writer = SummaryWriter(args.tensorboard_logdir) # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) eval_sampler = get_sampler(eval_dataset) if not os.path.exists(eval_output_dir): os.makedirs(eval_output_dir) dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, shuffle=False) eval_dataloader = pl.ParallelLoader(dataloader, [args.device]).per_device_loader(args.device) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataloader) * args.eval_batch_size) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating", disable=disable_logging): model.eval() with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": # XLM, DistilBERT and RoBERTa don't use segment_ids inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None outputs = model(**inputs) batch_eval_loss, logits = outputs[:2] eval_loss += batch_eval_loss nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) # tpu-comment: Get all predictions and labels from all worker shards of eval dataset preds = xm.mesh_reduce("eval_preds", preds, np.concatenate) out_label_ids = xm.mesh_reduce("eval_out_label_ids", out_label_ids, np.concatenate) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) results["eval_loss"] = eval_loss.item() output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") if xm.is_master_ordinal(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) writer.write("%s = %s\n" % (key, str(results[key]))) tb_writer.add_scalar(f"{eval_task}/{key}", results[key]) if args.metrics_debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) if xm.is_master_ordinal(): tb_writer.close() return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if not xm.is_master_ordinal(): xm.rendezvous("load_and_cache_examples") processor = processors[task]() output_mode = output_modes[task] cached_features_file = os.path.join( args.cache_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) # Load data features from cache or dataset file if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=output_mode, ) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if xm.is_master_ordinal(): xm.rendezvous("load_and_cache_examples") # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(args): if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( ( "Output directory ({}) already exists and is not empty." " Use --overwrite_output_dir to overcome." ).format(args.output_dir) ) # tpu-comment: Get TPU/XLA Device args.device = xm.xla_device() # Setup logging logging.basicConfig( format="[xla:{}] %(asctime)s - %(levelname)s - %(name)s - %(message)s".format(xm.get_ordinal()), datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) disable_logging = False if not xm.is_master_ordinal() and args.only_log_master: # Disable all non-master loggers below CRITICAL. logging.disable(logging.CRITICAL) disable_logging = True logger.warning("Process rank: %s, device: %s, num_cores: %s", xm.get_ordinal(), args.device, args.num_cores) # Set seed to have same initialization set_seed(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) if not xm.is_master_ordinal(): xm.rendezvous( "download_only_once" ) # Make sure only the first process in distributed training will download model & vocab # Load pretrained model and tokenizer args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, xla_device=True, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if xm.is_master_ordinal(): xm.rendezvous("download_only_once") # Send model to TPU/XLA device. model.to(args.device) logger.info("Training/evaluation parameters %s", args) if args.do_train: # Train the model. train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer, disable_logging=disable_logging) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) if xm.is_master_ordinal(): # Save trained model. # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() # Create output directory if needed if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained. torch.save(args, os.path.join(args.output_dir, "training_args.bin")) xm.rendezvous("post_training_checkpoint") # model.save_pretrained needs to be called by all ordinals model.save_pretrained(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval: tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, disable_logging=disable_logging) result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results def get_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # TPU Parameters parser.add_argument("--num_cores", default=8, type=int, help="Number of TPU cores to use (1 or 8).") parser.add_argument("--metrics_debug", action="store_true", help="Whether to print debug metrics.") # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded and features file generated", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--train_batch_size", default=8, type=int, help="Per core batch size for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Per core batch size for evaluation.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--tensorboard_logdir", default="./runs", type=str, help="Where to write tensorboard metrics.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X update steps.") parser.add_argument("--only_log_master", action="store_true", help="Whether to log only from each hosts master.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X update steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") return parser.parse_args() def _mp_fn(rank, args): main(args) def main_cli(): args = get_args() xmp.spawn(_mp_fn, args=(args,), nprocs=args.num_cores) if __name__ == "__main__": main_cli()