# Backbone A backbone is a model used for feature extraction for higher level computer vision tasks such as object detection and image classification. Transformers provides an [`AutoBackbone`] class for initializing a Transformers backbone from pretrained model weights, and two utility classes: * [`~utils.BackboneMixin`] enables initializing a backbone from Transformers or [timm](https://hf.co/docs/timm/index) and includes functions for returning the output features and indices. * [`~utils.BackboneConfigMixin`] sets the output features and indices of the backbone configuration. [timm](https://hf.co/docs/timm/index) models are loaded with the [`TimmBackbone`] and [`TimmBackboneConfig`] classes. Backbones are supported for the following models: * [BEiT](..model_doc/beit) * [BiT](../model_doc/bit) * [ConvNet](../model_doc/convnext) * [ConvNextV2](../model_doc/convnextv2) * [DiNAT](..model_doc/dinat) * [DINOV2](../model_doc/dinov2) * [FocalNet](../model_doc/focalnet) * [MaskFormer](../model_doc/maskformer) * [NAT](../model_doc/nat) * [ResNet](../model_doc/resnet) * [Swin Transformer](../model_doc/swin) * [Swin Transformer v2](../model_doc/swinv2) * [ViTDet](../model_doc/vitdet) ## AutoBackbone [[autodoc]] AutoBackbone ## BackboneMixin [[autodoc]] utils.BackboneMixin ## BackboneConfigMixin [[autodoc]] utils.BackboneConfigMixin ## TimmBackbone [[autodoc]] models.timm_backbone.TimmBackbone ## TimmBackboneConfig [[autodoc]] models.timm_backbone.TimmBackboneConfig