# ViTMSN
## Overview
The ViTMSN model was proposed in [Masked Siamese Networks for Label-Efficient Learning](https://huggingface.co/papers/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes,
Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. The paper presents a joint-embedding architecture to match the prototypes
of masked patches with that of the unmasked patches. With this setup, their method yields excellent performance in the low-shot and extreme low-shot
regimes.
The abstract from the paper is the following:
*We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our
approach matches the representation of an image view containing randomly masked patches to the representation of the original
unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the
unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures,
while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance,
on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy,
and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark.*
MSN architecture. Taken from the original paper.
This model was contributed by [sayakpaul](https://huggingface.co/sayakpaul). The original code can be found [here](https://github.com/facebookresearch/msn).
## Usage tips
- MSN (masked siamese networks) is a method for self-supervised pre-training of Vision Transformers (ViTs). The pre-training
objective is to match the prototypes assigned to the unmasked views of the images to that of the masked views of the same images.
- The authors have only released pre-trained weights of the backbone (ImageNet-1k pre-training). So, to use that on your own image classification dataset,
use the [`ViTMSNForImageClassification`] class which is initialized from [`ViTMSNModel`]. Follow
[this notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) for a detailed tutorial on fine-tuning.
- MSN is particularly useful in the low-shot and extreme low-shot regimes. Notably, it achieves 75.7% top-1 accuracy with only 1% of ImageNet-1K
labels when fine-tuned.
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import ViTMSNForImageClassification
model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-base", attn_implementation="sdpa", torch_dtype=torch.float16)
...
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `facebook/vit-msn-base` model, we saw the following speedups during inference.
| Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
|--------------|-------------------------------------------|-------------------------------------------|------------------------------|
| 1 | 7 | 6 | 1.17 |
| 2 | 8 | 6 | 1.33 |
| 4 | 8 | 6 | 1.33 |
| 8 | 8 | 6 | 1.33 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViT MSN.
- [`ViTMSNForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## ViTMSNConfig
[[autodoc]] ViTMSNConfig
## ViTMSNModel
[[autodoc]] ViTMSNModel
- forward
## ViTMSNForImageClassification
[[autodoc]] ViTMSNForImageClassification
- forward