# TimmWrapper
PyTorch
## Overview Helper class to enable loading timm models to be used with the transformers library and its autoclasses. ```python >>> import torch >>> from PIL import Image >>> from urllib.request import urlopen >>> from transformers import AutoModelForImageClassification, AutoImageProcessor >>> # Load image >>> image = Image.open(urlopen( ... 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' ... )) >>> # Load model and image processor >>> checkpoint = "timm/resnet50.a1_in1k" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint) >>> model = AutoModelForImageClassification.from_pretrained(checkpoint).eval() >>> # Preprocess image >>> inputs = image_processor(image) >>> # Forward pass >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # Get top 5 predictions >>> top5_probabilities, top5_class_indices = torch.topk(logits.softmax(dim=1) * 100, k=5) ``` ## Resources: A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with TimmWrapper. - [Collection of Example Notebook](https://github.com/ariG23498/timm-wrapper-examples) 🌎 > [!TIP] > For a more detailed overview please read the [official blog post](https://huggingface.co/blog/timm-transformers) on the timm integration. ## TimmWrapperConfig [[autodoc]] TimmWrapperConfig ## TimmWrapperImageProcessor [[autodoc]] TimmWrapperImageProcessor - preprocess ## TimmWrapperModel [[autodoc]] TimmWrapperModel - forward ## TimmWrapperForImageClassification [[autodoc]] TimmWrapperForImageClassification - forward