# LED
PyTorch TensorFlow
## Overview The LED model was proposed in [Longformer: The Long-Document Transformer](https://huggingface.co/papers/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. The abstract from the paper is the following: *Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.* ## Usage tips - [`LEDForConditionalGeneration`] is an extension of [`BartForConditionalGeneration`] exchanging the traditional *self-attention* layer with *Longformer*'s *chunked self-attention* layer. [`LEDTokenizer`] is an alias of [`BartTokenizer`]. - LED works very well on long-range *sequence-to-sequence* tasks where the `input_ids` largely exceed a length of 1024 tokens. - LED pads the `input_ids` to be a multiple of `config.attention_window` if required. Therefore a small speed-up is gained, when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument. - LED makes use of *global attention* by means of the `global_attention_mask` (see [`LongformerModel`]). For summarization, it is advised to put *global attention* only on the first `` token. For question answering, it is advised to put *global attention* on all tokens of the question. - To fine-tune LED on all 16384, *gradient checkpointing* can be enabled in case training leads to out-of-memory (OOM) errors. This can be done by executing `model.gradient_checkpointing_enable()`. Moreover, the `use_cache=False` flag can be used to disable the caching mechanism to save memory. - LED is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). ## Resources - [A notebook showing how to evaluate LED](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing). - [A notebook showing how to fine-tune LED](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing). - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## LEDConfig [[autodoc]] LEDConfig ## LEDTokenizer [[autodoc]] LEDTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LEDTokenizerFast [[autodoc]] LEDTokenizerFast ## LED specific outputs [[autodoc]] models.led.modeling_led.LEDEncoderBaseModelOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqModelOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqLMOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqSequenceClassifierOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqQuestionAnsweringModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDEncoderBaseModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput ## LEDModel [[autodoc]] LEDModel - forward ## LEDForConditionalGeneration [[autodoc]] LEDForConditionalGeneration - forward ## LEDForSequenceClassification [[autodoc]] LEDForSequenceClassification - forward ## LEDForQuestionAnswering [[autodoc]] LEDForQuestionAnswering - forward ## TFLEDModel [[autodoc]] TFLEDModel - call ## TFLEDForConditionalGeneration [[autodoc]] TFLEDForConditionalGeneration - call