# EETQ The [EETQ](https://github.com/NetEase-FuXi/EETQ) library supports int8 per-channel weight-only quantization for NVIDIA GPUS. The high-performance GEMM and GEMV kernels are from FasterTransformer and TensorRT-LLM. It requires no calibration dataset and does not need to pre-quantize your model. Moreover, the accuracy degradation is negligible owing to the per-channel quantization. Make sure you have eetq installed from the [release page](https://github.com/NetEase-FuXi/EETQ/releases) ``` pip install --no-cache-dir https://github.com/NetEase-FuXi/EETQ/releases/download/v1.0.0/EETQ-1.0.0+cu121+torch2.1.2-cp310-cp310-linux_x86_64.whl ``` or via the source code https://github.com/NetEase-FuXi/EETQ. EETQ requires CUDA capability <= 8.9 and >= 7.0 ``` git clone https://github.com/NetEase-FuXi/EETQ.git cd EETQ/ git submodule update --init --recursive pip install . ``` An unquantized model can be quantized via "from_pretrained". ```py from transformers import AutoModelForCausalLM, EetqConfig path = "/path/to/model" quantization_config = EetqConfig("int8") model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", quantization_config=quantization_config) ``` A quantized model can be saved via "saved_pretrained" and be reused again via the "from_pretrained". ```py quant_path = "/path/to/save/quantized/model" model.save_pretrained(quant_path) model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto") ```