# coding=utf-8 # Copyright 2018 XXX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import LxmertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers.models.lxmert.modeling_tf_lxmert import TFLxmertForPreTraining, TFLxmertModel class TFLxmertModelTester(object): def __init__( self, parent, vocab_size=300, hidden_size=28, num_attention_heads=2, num_labels=2, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, num_qa_labels=30, num_object_labels=16, num_attr_labels=4, num_visual_features=10, l_layers=2, x_layers=1, r_layers=1, visual_feat_dim=128, visual_pos_dim=4, visual_loss_normalizer=6.67, seq_length=20, batch_size=8, is_training=True, task_matched=True, task_mask_lm=True, task_obj_predict=True, task_qa=True, visual_obj_loss=True, visual_attr_loss=True, visual_feat_loss=True, use_token_type_ids=True, use_lang_mask=True, output_attentions=False, output_hidden_states=False, scope=None, ): self.parent = parent self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_labels = num_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.pad_token_id = pad_token_id self.num_qa_labels = num_qa_labels self.num_object_labels = num_object_labels self.num_attr_labels = num_attr_labels self.l_layers = l_layers self.x_layers = x_layers self.r_layers = r_layers self.visual_feat_dim = visual_feat_dim self.visual_pos_dim = visual_pos_dim self.visual_loss_normalizer = visual_loss_normalizer self.seq_length = seq_length self.batch_size = batch_size self.is_training = is_training self.use_lang_mask = use_lang_mask self.task_matched = task_matched self.task_mask_lm = task_mask_lm self.task_obj_predict = task_obj_predict self.task_qa = task_qa self.visual_obj_loss = visual_obj_loss self.visual_attr_loss = visual_attr_loss self.visual_feat_loss = visual_feat_loss self.num_visual_features = num_visual_features self.use_token_type_ids = use_token_type_ids self.output_attentions = output_attentions self.output_hidden_states = output_hidden_states self.scope = scope self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} def prepare_config_and_inputs(self): output_attentions = self.output_attentions input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size) visual_feats = tf.random.uniform((self.batch_size, self.num_visual_features, self.visual_feat_dim)) bounding_boxes = tf.random.uniform((self.batch_size, self.num_visual_features, 4)) input_mask = None if self.use_lang_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) obj_labels = None if self.task_obj_predict: obj_labels = {} if self.visual_attr_loss and self.task_obj_predict: obj_labels["attr"] = ( ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), ) if self.visual_feat_loss and self.task_obj_predict: obj_labels["feat"] = ( ids_tensor( [self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features ), ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features), ) if self.visual_obj_loss and self.task_obj_predict: obj_labels["obj"] = ( ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), ) ans = None if self.task_qa: ans = ids_tensor([self.batch_size], self.num_qa_labels) masked_lm_labels = None if self.task_mask_lm: masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) matched_label = None if self.task_matched: matched_label = ids_tensor([self.batch_size], self.num_labels) config = LxmertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_attention_heads=self.num_attention_heads, num_labels=self.num_labels, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, pad_token_id=self.pad_token_id, num_qa_labels=self.num_qa_labels, num_object_labels=self.num_object_labels, num_attr_labels=self.num_attr_labels, l_layers=self.l_layers, x_layers=self.x_layers, r_layers=self.r_layers, visual_feat_dim=self.visual_feat_dim, visual_pos_dim=self.visual_pos_dim, visual_loss_normalizer=self.visual_loss_normalizer, task_matched=self.task_matched, task_mask_lm=self.task_mask_lm, task_obj_predict=self.task_obj_predict, task_qa=self.task_qa, visual_obj_loss=self.visual_obj_loss, visual_attr_loss=self.visual_attr_loss, visual_feat_loss=self.visual_feat_loss, output_attentions=self.output_attentions, output_hidden_states=self.output_hidden_states, ) return ( config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ) def create_and_check_lxmert_model( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = TFLxmertModel(config=config) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, output_attentions=not output_attentions, ) result = model(input_ids, visual_feats, bounding_boxes, return_dict=False) result = model(input_ids, visual_feats, bounding_boxes, return_dict=True) self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual( result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size) ) self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self, return_obj_labels=False): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "visual_feats": visual_feats, "visual_pos": bounding_boxes, "token_type_ids": token_type_ids, "attention_mask": input_mask, } if return_obj_labels: inputs_dict["obj_labels"] = obj_labels return config, inputs_dict def create_and_check_lxmert_for_pretraining( self, config, input_ids, visual_feats, bounding_boxes, token_type_ids, input_mask, obj_labels, masked_lm_labels, matched_label, ans, output_attentions, ): model = TFLxmertForPreTraining(config=config) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=output_attentions, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, output_attentions=not output_attentions, return_dict=False, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, obj_labels=obj_labels, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, matched_label=matched_label, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, ans=ans, ) result = model( input_ids, visual_feats, bounding_boxes, token_type_ids=token_type_ids, attention_mask=input_mask, masked_lm_labels=masked_lm_labels, obj_labels=obj_labels, matched_label=matched_label, ans=ans, output_attentions=not output_attentions, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) @require_tf class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFLxmertModel, TFLxmertForPreTraining) if is_tf_available() else () def setUp(self): self.model_tester = TFLxmertModelTester(self) self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_lxmert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_model(*config_and_inputs) def test_lxmert_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ["unc-nlp/lxmert-base-uncased"]: model = TFLxmertModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() encoder_seq_length = ( self.model_tester.encoder_seq_length if hasattr(self.model_tester, "encoder_seq_length") else self.model_tester.seq_length ) encoder_key_length = ( self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(model.config.output_hidden_states, False) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) # 2 hidden states were added self.assertEqual(out_len + 2, len(outputs)) language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_hidden_states_output(config, inputs_dict, model_class): model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1] self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1) self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1) seq_length = self.model_tester.seq_length num_visual_features = self.model_tester.num_visual_features self.assertListEqual( list(language_hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) self.assertListEqual( list(vision_hidden_states[0].shape[-2:]), [num_visual_features, self.model_tester.hidden_size], ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(config, inputs_dict, model_class) del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(config, inputs_dict, model_class) def test_pt_tf_model_equivalence(self): from transformers import is_torch_available if not is_torch_available(): return import torch import transformers for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common( return_obj_labels="PreTraining" in model_class.__name__ ) pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) config.output_hidden_states = True config.task_obj_predict = False tf_model = model_class(config) pt_model = pt_model_class(config) # Check we can load pt model in tf and vice-versa with model => model functions tf_model = transformers.load_pytorch_model_in_tf2_model( tf_model, pt_model, tf_inputs=self._prepare_for_class(inputs_dict, model_class) ) pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() # Delete obj labels as we want to compute the hidden states and not the loss if "obj_labels" in inputs_dict: del inputs_dict["obj_labels"] def torch_type(key): if key in ("visual_feats", "visual_pos"): return torch.float32 else: return torch.long def recursive_numpy_convert(iterable): return_dict = {} for key, value in iterable.items(): if isinstance(value, dict): return_dict[key] = recursive_numpy_convert(value) else: if isinstance(value, (list, tuple)): return_dict[key] = ( torch.from_numpy(iter_value.numpy()).to(torch_type(key)) for iter_value in value ) else: return_dict[key] = torch.from_numpy(value.numpy()).to(torch_type(key)) return return_dict pt_inputs_dict = recursive_numpy_convert(self._prepare_for_class(inputs_dict, model_class)) # need to rename encoder-decoder "inputs" for PyTorch if "inputs" in pt_inputs_dict and self.is_encoder_decoder: pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs") with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(self._prepare_for_class(inputs_dict, model_class), training=False) tf_hidden_states = tfo[0].numpy() pt_hidden_states = pto[0].numpy() import numpy as np tf_nans = np.copy(np.isnan(tf_hidden_states)) pt_nans = np.copy(np.isnan(pt_hidden_states)) pt_hidden_states[tf_nans] = 0 tf_hidden_states[tf_nans] = 0 pt_hidden_states[pt_nans] = 0 tf_hidden_states[pt_nans] = 0 max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states)) # Debug info (remove when fixed) if max_diff >= 2e-2: print("===") print(model_class) print(config) print(inputs_dict) print(pt_inputs_dict) self.assertLessEqual(max_diff, 6e-2) # Check we can load pt model in tf and vice-versa with checkpoint => model functions with tempfile.TemporaryDirectory() as tmpdirname: import os pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") torch.save(pt_model.state_dict(), pt_checkpoint_path) tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path) tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") tf_model.save_weights(tf_checkpoint_path) pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path) # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences pt_model.eval() pt_inputs_dict = dict( (name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in self._prepare_for_class(inputs_dict, model_class).items() ) for key, value in pt_inputs_dict.items(): if key in ("visual_feats", "visual_pos"): pt_inputs_dict[key] = value.to(torch.float32) else: pt_inputs_dict[key] = value.to(torch.long) with torch.no_grad(): pto = pt_model(**pt_inputs_dict) tfo = tf_model(self._prepare_for_class(inputs_dict, model_class)) tfo = tfo[0].numpy() pto = pto[0].numpy() tf_nans = np.copy(np.isnan(tfo)) pt_nans = np.copy(np.isnan(pto)) pto[tf_nans] = 0 tfo[tf_nans] = 0 pto[pt_nans] = 0 tfo[pt_nans] = 0 max_diff = np.amax(np.abs(tfo - pto)) self.assertLessEqual(max_diff, 6e-2) def test_save_load(self): for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common( return_obj_labels="PreTraining" in model_class.__name__ ) model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assert_outputs_same(after_outputs, outputs) def test_compile_tf_model(self): optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common( return_obj_labels="PreTraining" in model_class.__name__ ) input_ids = tf.keras.Input( batch_shape=(self.model_tester.batch_size, self.model_tester.seq_length), name="input_ids", dtype="int32", ) visual_feats = tf.keras.Input( batch_shape=( self.model_tester.batch_size, self.model_tester.num_visual_features, self.model_tester.visual_feat_dim, ), name="visual_feats", dtype="int32", ) visual_pos = tf.keras.Input( batch_shape=(self.model_tester.batch_size, self.model_tester.num_visual_features, 4), name="visual_pos", dtype="int32", ) # Prepare our model model = model_class(config) # Let's load it from the disk to be sure we can use pretrained weights with tempfile.TemporaryDirectory() as tmpdirname: outputs = model(self._prepare_for_class(inputs_dict, model_class)) # build the model model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) outputs_dict = model(input_ids, visual_feats, visual_pos) hidden_states = outputs_dict[0] # Add a dense layer on top to test integration with other keras modules outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states) # Compile extended model extended_model = tf.keras.Model(inputs=[input_ids, visual_feats, visual_pos], outputs=[outputs]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) @slow def test_saved_model_with_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model._saved_model_inputs_spec = None model._set_save_spec(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: tf.saved_model.save(model, tmpdirname) model = tf.keras.models.load_model(tmpdirname) outputs = model(class_inputs_dict) language_hidden_states = outputs["language_hidden_states"] vision_hidden_states = outputs["vision_hidden_states"] self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1) self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1) seq_length = self.model_tester.seq_length num_visual_features = self.model_tester.num_visual_features self.assertListEqual( list(language_hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) self.assertListEqual( list(vision_hidden_states[0].shape[-2:]), [num_visual_features, self.model_tester.hidden_size], ) @slow def test_saved_model_with_attentions_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_attentions = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) model._saved_model_inputs_spec = None model._set_save_spec(class_inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: tf.saved_model.save(model, tmpdirname) model = tf.keras.models.load_model(tmpdirname) outputs = model(class_inputs_dict) language_attentions = outputs["language_attentions"] vision_attentions = outputs["vision_attentions"] cross_encoder_attentions = outputs["cross_encoder_attentions"] self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) attentions = [language_attentions, vision_attentions, cross_encoder_attentions] attention_shapes = [ [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], [ self.model_tester.num_attention_heads, self.model_tester.num_visual_features, self.model_tester.num_visual_features, ], [self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], ] for attention, attention_shape in zip(attentions, attention_shapes): self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)