import argparse from pathlib import Path import torch from rouge_score import rouge_scorer, scoring from tqdm import tqdm from transformers import AutoModelWithLMHead, AutoTokenizer DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_summaries( examples: list, out_file: str, model_name: str, batch_size: int = 8, device: str = DEFAULT_DEVICE ): fout = Path(out_file).open("w", encoding="utf-8") model = AutoModelWithLMHead.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) # update config with summarization specific params task_specific_params = model.config.task_specific_params if task_specific_params is not None: model.config.update(task_specific_params.get("summarization", {})) for batch in tqdm(list(chunks(examples, batch_size))): if "t5" in model_name: batch = [model.config.prefix + text for text in batch] dct = tokenizer.batch_encode_plus(batch, max_length=1024, return_tensors="pt", pad_to_max_length=True).to( device ) summaries = model.generate(**dct) dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) for hypothesis in dec: fout.write(hypothesis + "\n") fout.flush() def calculate_rouge(output_lns, reference_lns, score_path): score_file = Path(score_path).open("w") scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True) aggregator = scoring.BootstrapAggregator() for reference_ln, output_ln in zip(reference_lns, output_lns): scores = scorer.score(reference_ln, output_ln) aggregator.add_scores(scores) result = aggregator.aggregate() score_file.write( "ROUGE_1: \n{} \n\n ROUGE_2: \n{} \n\n ROUGE_L: \n{} \n\n".format( result["rouge1"], result["rouge2"], result["rougeL"] ) ) def run_generate(): parser = argparse.ArgumentParser() parser.add_argument( "input_path", type=str, help="like cnn_dm/test.source or cnn_dm/test_articles_input.txt", ) parser.add_argument( "output_path", type=str, help="where to save summaries", ) parser.add_argument( "model_name", type=str, default="facebook/bart-large-cnn", help="like bart-large-cnn,'t5-small', 't5-base', 't5-large', 't5-3b', 't5-11b", ) parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt") parser.add_argument( "--score_path", type=str, required=False, help="where to save the rouge score", ) parser.add_argument( "--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.", ) parser.add_argument( "--bs", type=int, default=8, required=False, help="batch size: how many to summarize at a time", ) args = parser.parse_args() examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] generate_summaries(examples, args.output_path, args.model_name, batch_size=args.bs, device=args.device) if args.score_path is not None: output_lns = [x.rstrip() for x in open(args.output_path).readlines()] reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()] calculate_rouge(output_lns, reference_lns, args.score_path) if __name__ == "__main__": run_generate()