# Graphormer[[graphormer]] 이 모델은 유지 보수 모드로만 운영되며, 코드를 변경하는 새로운 PR(Pull Request)은 받지 않습니다. 이 모델을 실행하는 데 문제가 발생한다면, 이 모델을 지원하는 마지막 버전인 v4.40.2를 다시 설치해 주세요. 다음 명령어를 실행하여 재설치할 수 있습니다: `pip install -U transformers==4.40.2`. ## 개요[[overview]] Graphormer 모델은 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu가 제안한 [트랜스포머가 그래프 표현에 있어서 정말 약할까?](https://arxiv.org/abs/2106.05234) 라는 논문에서 소개되었습니다. Graphormer는 그래프 트랜스포머 모델입니다. 텍스트 시퀀스 대신 그래프에서 계산을 수행할 수 있도록 수정되었으며, 전처리와 병합 과정에서 임베딩과 관심 특성을 생성한 후 수정된 어텐션을 사용합니다. 해당 논문의 초록입니다: *트랜스포머 아키텍처는 자연어 처리와 컴퓨터 비전 등 많은 분야에서 지배적인 선택을 받고 있는 아키텍처 입니다. 그러나 그래프 수준 예측 리더보드 상에서는 주류 GNN 변형모델들에 비해 경쟁력 있는 성능을 달성하지 못했습니다. 따라서 트랜스포머가 그래프 표현 학습에서 어떻게 잘 수행될 수 있을지는 여전히 미스터리였습니다. 본 논문에서는 Graphormer를 제시함으로써 이 미스터리를 해결합니다. Graphormer는 표준 트랜스포머 아키텍처를 기반으로 구축되었으며, 특히 최근의 OpenGraphBenchmark Large-Scale Challenge(OGB-LSC)의 광범위한 그래프 표현 학습 작업에서 탁월한 결과를 얻을 수 있었습니다. 그래프에서 트랜스포머를 활용하는데 핵심은 그래프의 구조적 정보를 모델에 효과적으로 인코딩하는 것입니다. 이를 위해 우리는 Graphormer가 그래프 구조 데이터를 더 잘 모델링할 수 있도록 돕는 몇 가지 간단하면서도 효과적인 구조적 인코딩 방법을 제안합니다. 또한, 우리는 Graphormer의 표현을 수학적으로 특성화하고, 그래프의 구조적 정보를 인코딩하는 우리의 방식으로 많은 인기 있는 GNN 변형모델들이 Graphormer의 특수한 경우로 포함될 수 있음을 보여줍니다.* 이 모델은 [clefourrier](https://huggingface.co/clefourrier)가 기여했습니다. 원본 코드는 [이곳](https://github.com/microsoft/Graphormer)에서 확인할 수 있습니다. ## 사용 팁[[usage-tips]] 이 모델은 큰 그래프(100개 이상의 노드개수/엣지개수)에서는 메모리 사용량이 폭발적으로 증가하므로 잘 작동하지 않습니다. 대안으로 배치 크기를 줄이거나, RAM을 늘리거나 또는 algos_graphormer.pyx 파일의 `UNREACHABLE_NODE_DISTANCE` 매개변수를 줄이는 방법도 있지만, 700개 이상의 노드개수/엣지개수를 처리하기에는 여전히 어려울 것입니다. 이 모델은 토크나이저를 사용하지 않고, 대신 훈련 중에 특별한 콜레이터(collator)를 사용합니다. ## GraphormerConfig[[transformers.GraphormerConfig]] [[autodoc]] GraphormerConfig ## GraphormerModel[[transformers.GraphormerModel]] [[autodoc]] GraphormerModel - forward ## GraphormerForGraphClassification[[transformers.GraphormerForGraphClassification]] [[autodoc]] GraphormerForGraphClassification - forward