import unittest from transformers import pipeline from .test_pipelines_common import MonoInputPipelineCommonMixin class TextGenerationPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase): pipeline_task = "text-generation" pipeline_running_kwargs = {"prefix": "This is "} small_models = ["sshleifer/tiny-ctrl"] # Models tested without the @slow decorator large_models = [] # Models tested with the @slow decorator def test_simple_generation(self): nlp = pipeline(task="text-generation", model=self.small_models[0]) # text-generation is non-deterministic by nature, we can't fully test the output outputs = nlp("This is a test") self.assertEqual(len(outputs), 1) self.assertEqual(list(outputs[0].keys()), ["generated_text"]) self.assertEqual(type(outputs[0]["generated_text"]), str) outputs = nlp(["This is a test", "This is a second test"]) self.assertEqual(len(outputs[0]), 1) self.assertEqual(list(outputs[0][0].keys()), ["generated_text"]) self.assertEqual(type(outputs[0][0]["generated_text"]), str) self.assertEqual(list(outputs[1][0].keys()), ["generated_text"]) self.assertEqual(type(outputs[1][0]["generated_text"]), str)