Processors
----------------------------------------------------
This library includes processors for several traditional tasks. These processors can be used to process a dataset into
examples that can be fed to a model.
``GLUE``
~~~~~~~~~~~~~~~~~~~~~
`General Language Understanding Evaluation (GLUE)`__ is a benchmark that evaluates
the performance of models across a diverse set of existing NLU tasks. It was released together with the paper
`GLUE: A multi-task benchmark and analysis platform for natural language understanding`__
This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched),
CoLA, SST2, STSB, QQP, QNLI, RTE and WNLI.
.. autoclass:: pytorch_transformers.data.processors.glue.MrpcProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.MnliProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.MnliMismatchedProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.ColaProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.Sst2Processor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.StsbProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.QqpProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.QnliProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.RteProcessor
:members:
.. autoclass:: pytorch_transformers.data.processors.glue.WnliProcessor
:members: