Processors ---------------------------------------------------- This library includes processors for several traditional tasks. These processors can be used to process a dataset into examples that can be fed to a model. ``GLUE`` ~~~~~~~~~~~~~~~~~~~~~ `General Language Understanding Evaluation (GLUE)`__ is a benchmark that evaluates the performance of models across a diverse set of existing NLU tasks. It was released together with the paper `GLUE: A multi-task benchmark and analysis platform for natural language understanding`__ This library hosts a total of 10 processors for the following tasks: MRPC, MNLI, MNLI (mismatched), CoLA, SST2, STSB, QQP, QNLI, RTE and WNLI. .. autoclass:: pytorch_transformers.data.processors.glue.MrpcProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.MnliProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.MnliMismatchedProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.ColaProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.Sst2Processor :members: .. autoclass:: pytorch_transformers.data.processors.glue.StsbProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.QqpProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.QnliProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.RteProcessor :members: .. autoclass:: pytorch_transformers.data.processors.glue.WnliProcessor :members: