# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """ from __future__ import absolute_import, division, print_function import logging import os import sys from io import open import json import csv import glob import tqdm from typing import List from transformers import PreTrainedTokenizer logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for multiple choice""" def __init__(self, example_id, question, contexts, endings, label=None): """Constructs a InputExample. Args: example_id: Unique id for the example. contexts: list of str. The untokenized text of the first sequence (context of corresponding question). question: string. The untokenized text of the second sequence (question). endings: list of str. multiple choice's options. Its length must be equal to contexts' length. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.example_id = example_id self.question = question self.contexts = contexts self.endings = endings self.label = label class InputFeatures(object): def __init__(self, example_id, choices_features, label ): self.example_id = example_id self.choices_features = [ { 'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids': segment_ids } for input_ids, input_mask, segment_ids in choices_features ] self.label = label class DataProcessor(object): """Base class for data converters for multiple choice data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() class RaceProcessor(DataProcessor): """Processor for the RACE data set.""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) high = os.path.join(data_dir, 'train/high') middle = os.path.join(data_dir, 'train/middle') high = self._read_txt(high) middle = self._read_txt(middle) return self._create_examples(high + middle, 'train') def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) high = os.path.join(data_dir, 'dev/high') middle = os.path.join(data_dir, 'dev/middle') high = self._read_txt(high) middle = self._read_txt(middle) return self._create_examples(high + middle, 'dev') def get_test_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} test".format(data_dir)) high = os.path.join(data_dir, 'test/high') middle = os.path.join(data_dir, 'test/middle') high = self._read_txt(high) middle = self._read_txt(middle) return self._create_examples(high + middle, 'test') def get_labels(self): """See base class.""" return ["0", "1", "2", "3"] def _read_txt(self, input_dir): lines = [] files = glob.glob(input_dir + "/*txt") for file in tqdm.tqdm(files, desc="read files"): with open(file, 'r', encoding='utf-8') as fin: data_raw = json.load(fin) data_raw["race_id"] = file lines.append(data_raw) return lines def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (_, data_raw) in enumerate(lines): race_id = "%s-%s" % (set_type, data_raw["race_id"]) article = data_raw["article"] for i in range(len(data_raw["answers"])): truth = str(ord(data_raw['answers'][i]) - ord('A')) question = data_raw['questions'][i] options = data_raw['options'][i] examples.append( InputExample( example_id=race_id, question=question, contexts=[article, article, article, article], # this is not efficient but convenient endings=[options[0], options[1], options[2], options[3]], label=truth)) return examples class SwagProcessor(DataProcessor): """Processor for the SWAG data set.""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train") def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev") def get_test_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) raise ValueError( "For swag testing, the input file does not contain a label column. It can not be tested in current code" "setting!" ) return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3"] def _read_csv(self, input_file): with open(input_file, 'r', encoding='utf-8') as f: reader = csv.reader(f) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines def _create_examples(self, lines: List[List[str]], type: str): """Creates examples for the training and dev sets.""" if type == "train" and lines[0][-1] != 'label': raise ValueError( "For training, the input file must contain a label column." ) examples = [ InputExample( example_id=line[2], question=line[5], # in the swag dataset, the # common beginning of each # choice is stored in "sent2". contexts = [line[4], line[4], line[4], line[4]], endings = [line[7], line[8], line[9], line[10]], label=line[11] ) for line in lines[1:] # we skip the line with the column names ] return examples class ArcProcessor(DataProcessor): """Processor for the ARC data set (request from allennlp).""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train") def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev") def get_test_examples(self, data_dir): logger.info("LOOKING AT {} test".format(data_dir)) return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3"] def _read_json(self, input_file): with open(input_file, 'r', encoding='utf-8') as fin: lines = fin.readlines() return lines def _create_examples(self, lines, type): """Creates examples for the training and dev sets.""" #There are two types of labels. They should be normalized def normalize(truth): if truth in "ABCD": return ord(truth) - ord("A") elif truth in "1234": return int(truth) - 1 else: logger.info("truth ERROR! %s", str(truth)) return None examples = [] three_choice = 0 four_choice = 0 five_choice = 0 other_choices = 0 # we deleted example which has more than or less than four choices for line in tqdm.tqdm(lines, desc="read arc data"): data_raw = json.loads(line.strip("\n")) if len(data_raw["question"]["choices"]) == 3: three_choice += 1 continue elif len(data_raw["question"]["choices"]) == 5: five_choice += 1 continue elif len(data_raw["question"]["choices"]) != 4: other_choices += 1 continue four_choice += 1 truth = str(normalize(data_raw["answerKey"])) assert truth != "None" question_choices = data_raw["question"] question = question_choices["stem"] id = data_raw["id"] options = question_choices["choices"] if len(options) == 4: examples.append( InputExample( example_id = id, question=question, contexts=[options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""), options[2]["para"].replace("_", ""), options[3]["para"].replace("_", "")], endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]], label=truth)) if type == "train": assert len(examples) > 1 assert examples[0].label is not None logger.info("len examples: %s}", str(len(examples))) logger.info("Three choices: %s", str(three_choice)) logger.info("Five choices: %s", str(five_choice)) logger.info("Other choices: %s", str(other_choices)) logger.info("four choices: %s", str(four_choice)) return examples def convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer, pad_token_segment_id=0, pad_on_left=False, pad_token=0, mask_padding_with_zero=True, ) -> List[InputFeatures]: """ Loads a data file into a list of `InputFeatures` """ label_map = {label : i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) choices_features = [] for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): text_a = context if example.question.find("_") != -1: # this is for cloze question text_b = example.question.replace("_", ending) else: text_b = example.question + " " + ending inputs = tokenizer.encode_plus( text_a, text_b, add_special_tokens=True, max_length=max_length, ) if 'num_truncated_tokens' in inputs and inputs['num_truncated_tokens'] > 0: logger.info('Attention! you are cropping tokens (swag task is ok). ' 'If you are training ARC and RACE and you are poping question + options,' 'you need to try to use a bigger max seq length!') input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length assert len(attention_mask) == max_length assert len(token_type_ids) == max_length choices_features.append((input_ids, attention_mask, token_type_ids)) label = label_map[example.label] if ex_index < 2: logger.info("*** Example ***") logger.info("race_id: {}".format(example.example_id)) for choice_idx, (input_ids, attention_mask, token_type_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("input_ids: {}".format(' '.join(map(str, input_ids)))) logger.info("attention_mask: {}".format(' '.join(map(str, attention_mask)))) logger.info("token_type_ids: {}".format(' '.join(map(str, token_type_ids)))) logger.info("label: {}".format(label)) features.append( InputFeatures( example_id=example.example_id, choices_features=choices_features, label=label, ) ) return features processors = { "race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor } MULTIPLE_CHOICE_TASKS_NUM_LABELS = { "race", 4, "swag", 4, "arc", 4 }