# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import pytest from transformers import AutoProcessor, Qwen2Tokenizer from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import Qwen2VLImageProcessor, Qwen2VLProcessor @require_vision @require_torch class Qwen2VLProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = Qwen2VLProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", patch_size=4) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() image_processor = self.get_image_processor() processor = Qwen2VLProcessor(tokenizer=tokenizer, image_processor=image_processor) processor.save_pretrained(self.tmpdirname) processor = Qwen2VLProcessor.from_pretrained(self.tmpdirname, use_fast=False) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.tokenizer, Qwen2Tokenizer) self.assertIsInstance(processor.image_processor, Qwen2VLImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Qwen2VLProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, text="dummy", return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Qwen2VLProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values", "image_grid_thw"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() # test if it raises when no text is passed with pytest.raises(TypeError): processor(images=image_input) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Qwen2VLProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() video_inputs = self.prepare_video_inputs() inputs = processor(text=input_str, images=image_input, videos=video_inputs) self.assertListEqual(list(inputs.keys()), processor.model_input_names)