# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shutil import tempfile import unittest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import ( AutoProcessor, LlavaOnevisionImageProcessor, LlavaOnevisionProcessor, LlavaOnevisionVideoProcessor, Qwen2TokenizerFast, ) @require_vision class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = LlavaOnevisionProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = LlavaOnevisionImageProcessor() video_processor = LlavaOnevisionVideoProcessor() tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct") processor_kwargs = self.prepare_processor_dict() processor = LlavaOnevisionProcessor( video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs ) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_video_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor def prepare_processor_dict(self): return {"chat_template": "dummy_template", "num_image_tokens": 6, "vision_feature_select_strategy": "default"} def test_processor_to_json_string(self): processor = self.get_processor() obj = json.loads(processor.to_json_string()) for key, value in self.prepare_processor_dict().items(): # chat_tempalate are tested as a separate test because they are saved in separate files if key != "chat_template": self.assertEqual(obj[key], value) self.assertEqual(getattr(processor, key, None), value) # Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved def test_chat_template_is_saved(self): processor_loaded = self.processor_class.from_pretrained(self.tmpdirname) processor_dict_loaded = json.loads(processor_loaded.to_json_string()) # chat templates aren't serialized to json in processors self.assertFalse("chat_template" in processor_dict_loaded.keys()) # they have to be saved as separate file and loaded back from that file # so we check if the same template is loaded processor_dict = self.prepare_processor_dict() self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None)) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_chat_template(self): processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf") expected_prompt = "<|im_start|>user \nWhat is shown in this image?<|im_end|><|im_start|>assistant\n" messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What is shown in this image?"}, ], }, ] formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) self.assertEqual(expected_prompt, formatted_prompt)