# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import require_torch, require_torchvision, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch from transformers.models.sam.image_processing_sam import _mask_to_rle_pytorch @require_vision @require_torchvision class SamProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = SamProcessor @classmethod def setUpClass(cls): cls.tmpdirname = tempfile.mkdtemp() image_processor = SamImageProcessor() processor = SamProcessor(image_processor) processor.save_pretrained(cls.tmpdirname) def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdirname, ignore_errors=True) def prepare_mask_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ mask_inputs = [np.random.randint(255, size=(30, 400), dtype=np.uint8)] mask_inputs = [Image.fromarray(x) for x in mask_inputs] return mask_inputs def test_chat_template_save_loading(self): self.skipTest("SamProcessor does not have a tokenizer") def test_image_processor_defaults_preserved_by_image_kwargs(self): self.skipTest("SamProcessor does not have a tokenizer") def test_kwargs_overrides_default_image_processor_kwargs(self): self.skipTest("SamProcessor does not have a tokenizer") def test_kwargs_overrides_default_tokenizer_kwargs(self): self.skipTest("SamProcessor does not have a tokenizer") def test_tokenizer_defaults_preserved_by_kwargs(self): self.skipTest("SamProcessor does not have a tokenizer") def test_save_load_pretrained_additional_features(self): with tempfile.TemporaryDirectory() as tmpdir: processor = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(tmpdir) image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = SamProcessor.from_pretrained(tmpdir, do_normalize=False, padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, SamImageProcessor) def test_image_processor_no_masks(self): image_processor = self.get_image_processor() processor = SamProcessor(image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) for image in input_feat_extract.pixel_values: self.assertEqual(image.shape, (3, 1024, 1024)) for original_size in input_feat_extract.original_sizes: np.testing.assert_array_equal(original_size, np.array([30, 400])) for reshaped_input_size in input_feat_extract.reshaped_input_sizes: np.testing.assert_array_equal( reshaped_input_size, np.array([77, 1024]) ) # reshaped_input_size value is before padding def test_image_processor_with_masks(self): image_processor = self.get_image_processor() processor = SamProcessor(image_processor=image_processor) image_input = self.prepare_image_inputs() mask_input = self.prepare_mask_inputs() input_feat_extract = image_processor(images=image_input, segmentation_maps=mask_input, return_tensors="np") input_processor = processor(images=image_input, segmentation_maps=mask_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) for label in input_feat_extract.labels: self.assertEqual(label.shape, (256, 256)) @require_torch def test_post_process_masks(self): image_processor = self.get_image_processor() processor = SamProcessor(image_processor=image_processor) dummy_masks = [torch.ones((1, 3, 5, 5))] original_sizes = [[1764, 2646]] reshaped_input_size = [[683, 1024]] masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) masks = processor.post_process_masks( dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) # should also work with np dummy_masks = [np.ones((1, 3, 5, 5))] masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size)) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) dummy_masks = [[1, 0], [0, 1]] with self.assertRaises(ValueError): masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size)) def test_rle_encoding(self): """ Test the run-length encoding function. """ # Test that a mask of all zeros returns a single run [height * width]. input_mask = torch.zeros((1, 2, 2), dtype=torch.long) # shape: 1 x 2 x 2 rle = _mask_to_rle_pytorch(input_mask) self.assertEqual(len(rle), 1) self.assertEqual(rle[0]["size"], [2, 2]) # For a 2x2 all-zero mask, we expect a single run of length 4: self.assertEqual(rle[0]["counts"], [4]) # Test that a mask of all ones returns [0, height * width]. input_mask = torch.ones((1, 2, 2), dtype=torch.long) # shape: 1 x 2 x 2 rle = _mask_to_rle_pytorch(input_mask) self.assertEqual(len(rle), 1) self.assertEqual(rle[0]["size"], [2, 2]) # For a 2x2 all-one mask, we expect two runs: [0, 4]. self.assertEqual(rle[0]["counts"], [0, 4]) # Test a mask with mixed 0s and 1s to ensure the run-length encoding is correct. # Example mask: # Row 0: [0, 1] # Row 1: [1, 1] # This is shape (1, 2, 2). # Flattened in Fortran order -> [0, 1, 1, 1]. # The RLE for [0,1,1,1] is [1, 3]. input_mask = torch.tensor([[[0, 1], [1, 1]]], dtype=torch.long) rle = _mask_to_rle_pytorch(input_mask) self.assertEqual(len(rle), 1) self.assertEqual(rle[0]["size"], [2, 2]) self.assertEqual(rle[0]["counts"], [1, 3]) # 1 zero, followed by 3 ones