# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import _sentencepiece_available, _torch_available, require_sentencepiece if _sentencepiece_available: from transformers.tokenization_marian import save_json, vocab_files_names from .test_tokenization_common import TokenizerTesterMixin SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model") mock_tokenizer_config = {"target_lang": "fi", "source_lang": "en"} zh_code = ">>zh<<" ORG_NAME = "Helsinki-NLP/" FRAMEWORK = "pt" if _torch_available else "tf" @require_sentencepiece class MarianTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = MarianTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab = ["", "", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", ""] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / vocab_files_names["vocab"]) save_json(mock_tokenizer_config, save_dir / vocab_files_names["tokenizer_config_file"]) if not (save_dir / vocab_files_names["source_spm"]).exists(): copyfile(SAMPLE_SP, save_dir / vocab_files_names["source_spm"]) copyfile(SAMPLE_SP, save_dir / vocab_files_names["target_spm"]) tokenizer = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return ( "This is a test", "This is a test", ) def test_tokenizer_equivalence_en_de(self): en_de_tokenizer = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de") batch = en_de_tokenizer.prepare_seq2seq_batch(["I am a small frog"], return_tensors=None) self.assertIsInstance(batch, BatchEncoding) expected = [38, 121, 14, 697, 38848, 0] self.assertListEqual(expected, batch.input_ids[0]) save_dir = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(save_dir) contents = [x.name for x in Path(save_dir).glob("*")] self.assertIn("source.spm", contents) MarianTokenizer.from_pretrained(save_dir) def test_outputs_not_longer_than_maxlen(self): tok = self.get_tokenizer() batch = tok.prepare_seq2seq_batch(["I am a small frog" * 1000, "I am a small frog"], return_tensors=FRAMEWORK) self.assertIsInstance(batch, BatchEncoding) self.assertEqual(batch.input_ids.shape, (2, 512)) def test_outputs_can_be_shorter(self): tok = self.get_tokenizer() batch_smaller = tok.prepare_seq2seq_batch(["I am a tiny frog", "I am a small frog"], return_tensors=FRAMEWORK) self.assertIsInstance(batch_smaller, BatchEncoding) self.assertEqual(batch_smaller.input_ids.shape, (2, 10))