# Multiple choice
A multiple choice task is similar to question answering, except several candidate answers are provided along with a context. The model is trained to select the correct answer from multiple inputs given a context.
This guide will show you how to fine-tune [BERT](https://huggingface.co/bert-base-uncased) on the `regular` configuration of the [SWAG](https://huggingface.co/datasets/swag) dataset to select the best answer given multiple options and some context.
## Load SWAG dataset
Load the SWAG dataset from the 🤗 Datasets library:
```py
>>> from datasets import load_dataset
>>> swag = load_dataset("swag", "regular")
```
Then take a look at an example:
```py
>>> swag["train"][0]
{'ending0': 'passes by walking down the street playing their instruments.',
'ending1': 'has heard approaching them.',
'ending2': "arrives and they're outside dancing and asleep.",
'ending3': 'turns the lead singer watches the performance.',
'fold-ind': '3416',
'gold-source': 'gold',
'label': 0,
'sent1': 'Members of the procession walk down the street holding small horn brass instruments.',
'sent2': 'A drum line',
'startphrase': 'Members of the procession walk down the street holding small horn brass instruments. A drum line',
'video-id': 'anetv_jkn6uvmqwh4'}
```
The `sent1` and `sent2` fields show how a sentence begins, and each `ending` field shows how a sentence could end. Given the sentence beginning, the model must pick the correct sentence ending as indicated by the `label` field.
## Preprocess
Load the BERT tokenizer to process the start of each sentence and the four possible endings:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
The preprocessing function needs to do:
1. Make four copies of the `sent1` field so you can combine each of them with `sent2` to recreate how a sentence starts.
2. Combine `sent2` with each of the four possible sentence endings.
3. Flatten these two lists so you can tokenize them, and then unflatten them afterward so each example has a corresponding `input_ids`, `attention_mask`, and `labels` field.
```py
>>> ending_names = ["ending0", "ending1", "ending2", "ending3"]
>>> def preprocess_function(examples):
... first_sentences = [[context] * 4 for context in examples["sent1"]]
... question_headers = examples["sent2"]
... second_sentences = [
... [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
... ]
... first_sentences = sum(first_sentences, [])
... second_sentences = sum(second_sentences, [])
... tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True)
... return {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
```
Use 🤗 Datasets [`map`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map) function to apply the preprocessing function over the entire dataset. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
```py
tokenized_swag = swag.map(preprocess_function, batched=True)
```
🤗 Transformers doesn't have a data collator for multiple choice, so you will need to create one. You can adapt the [`DataCollatorWithPadding`] to create a batch of examples for multiple choice. It will also *dynamically pad* your text and labels to the length of the longest element in its batch, so they are a uniform length. While it is possible to pad your text in the `tokenizer` function by setting `padding=True`, dynamic padding is more efficient.
`DataCollatorForMultipleChoice` will flatten all the model inputs, apply padding, and then unflatten the results:
```py
>>> from dataclasses import dataclass
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
>>> from typing import Optional, Union
>>> import torch
>>> @dataclass
... class DataCollatorForMultipleChoice:
... """
... Data collator that will dynamically pad the inputs for multiple choice received.
... """
... tokenizer: PreTrainedTokenizerBase
... padding: Union[bool, str, PaddingStrategy] = True
... max_length: Optional[int] = None
... pad_to_multiple_of: Optional[int] = None
... def __call__(self, features):
... label_name = "label" if "label" in features[0].keys() else "labels"
... labels = [feature.pop(label_name) for feature in features]
... batch_size = len(features)
... num_choices = len(features[0]["input_ids"])
... flattened_features = [
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
... ]
... flattened_features = sum(flattened_features, [])
... batch = self.tokenizer.pad(
... flattened_features,
... padding=self.padding,
... max_length=self.max_length,
... pad_to_multiple_of=self.pad_to_multiple_of,
... return_tensors="pt",
... )
... batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
... batch["labels"] = torch.tensor(labels, dtype=torch.int64)
... return batch
```
```py
>>> from dataclasses import dataclass
>>> from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
>>> from typing import Optional, Union
>>> import tensorflow as tf
>>> @dataclass
... class DataCollatorForMultipleChoice:
... """
... Data collator that will dynamically pad the inputs for multiple choice received.
... """
... tokenizer: PreTrainedTokenizerBase
... padding: Union[bool, str, PaddingStrategy] = True
... max_length: Optional[int] = None
... pad_to_multiple_of: Optional[int] = None
... def __call__(self, features):
... label_name = "label" if "label" in features[0].keys() else "labels"
... labels = [feature.pop(label_name) for feature in features]
... batch_size = len(features)
... num_choices = len(features[0]["input_ids"])
... flattened_features = [
... [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
... ]
... flattened_features = sum(flattened_features, [])
... batch = self.tokenizer.pad(
... flattened_features,
... padding=self.padding,
... max_length=self.max_length,
... pad_to_multiple_of=self.pad_to_multiple_of,
... return_tensors="tf",
... )
... batch = {k: tf.reshape(v, (batch_size, num_choices, -1)) for k, v in batch.items()}
... batch["labels"] = tf.convert_to_tensor(labels, dtype=tf.int64)
... return batch
```
## Train
Load BERT with [`AutoModelForMultipleChoice`]:
```py
>>> from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer
>>> model = AutoModelForMultipleChoice.from_pretrained("bert-base-uncased")
```
If you aren't familiar with fine-tuning a model with Trainer, take a look at the basic tutorial [here](../training#finetune-with-trainer)!
At this point, only three steps remain:
1. Define your training hyperparameters in [`TrainingArguments`].
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, and data collator.
3. Call [`~Trainer.train`] to fine-tune your model.
```py
>>> training_args = TrainingArguments(
... output_dir="./results",
... evaluation_strategy="epoch",
... learning_rate=5e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... weight_decay=0.01,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_swag["train"],
... eval_dataset=tokenized_swag["validation"],
... tokenizer=tokenizer,
... data_collator=DataCollatorForMultipleChoice(tokenizer=tokenizer),
... )
>>> trainer.train()
```
To fine-tune a model in TensorFlow, start by converting your datasets to the `tf.data.Dataset` format with [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.to_tf_dataset). Specify inputs in `columns`, targets in `label_cols`, whether to shuffle the dataset order, batch size, and the data collator:
```py
>>> data_collator = DataCollatorForMultipleChoice(tokenizer=tokenizer)
>>> tf_train_set = tokenized_swag["train"].to_tf_dataset(
... columns=["attention_mask", "input_ids"],
... label_cols=["labels"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_validation_set = tokenized_swag["validation"].to_tf_dataset(
... columns=["attention_mask", "input_ids"],
... label_cols=["labels"],
... shuffle=False,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
If you aren't familiar with fine-tuning a model with Keras, take a look at the basic tutorial [here](training#finetune-with-keras)!
Set up an optimizer function, learning rate schedule, and some training hyperparameters:
```py
>>> from transformers import create_optimizer
>>> batch_size = 16
>>> num_train_epochs = 2
>>> total_train_steps = (len(tokenized_swag["train"]) // batch_size) * num_train_epochs
>>> optimizer, schedule = create_optimizer(init_lr=5e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
Load BERT with [`TFAutoModelForMultipleChoice`]:
```py
>>> from transformers import TFAutoModelForMultipleChoice
>>> model = TFAutoModelForMultipleChoice.from_pretrained("bert-base-uncased")
```
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> model.compile(
... optimizer=optimizer,
... loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
... )
```
Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) to fine-tune the model:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=2)
```