# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Moonshine model.""" import copy import unittest from transformers import MoonshineConfig, is_torch_available from transformers.testing_utils import cleanup, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, floats_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoProcessor, MoonshineForConditionalGeneration, MoonshineModel, ) from datasets import load_dataset class MoonshineModelTester: def __init__( self, parent, batch_size=3, # need batch_size != num_hidden_layers seq_length=1000, is_training=False, use_labels=False, vocab_size=147, hidden_size=8, intermediate_size=32, num_hidden_layers=2, num_attention_heads=2, num_key_value_heads=2, encoder_hidden_act="gelu", decoder_hidden_act="silu", decoder_start_token_id=85, bos_token_id=98, eos_token_id=98, pad_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.use_labels = use_labels self.vocab_size = vocab_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.encoder_hidden_act = encoder_hidden_act self.decoder_hidden_act = decoder_hidden_act self.decoder_start_token_id = decoder_start_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) decoder_input_ids = torch.tensor(self.batch_size * [[self.decoder_start_token_id]], device=torch_device) decoder_attention_mask = decoder_input_ids.ne(self.pad_token_id) config = self.get_config() return config, input_values, attention_mask, decoder_input_ids, decoder_attention_mask def get_config(self): return MoonshineConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, intermediate_size=self.intermediate_size, encoder_num_hidden_layers=self.num_hidden_layers, decoder_num_hidden_layers=self.num_hidden_layers, encoder_num_attention_heads=self.num_attention_heads, decoder_num_attention_heads=self.num_attention_heads, encoder_num_key_value_heads=self.num_key_value_heads, decoder_num_key_value_heads=self.num_key_value_heads, encoder_hidden_act=self.encoder_hidden_act, decoder_hidden_act=self.decoder_hidden_act, decoder_start_token_id=self.decoder_start_token_id, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, ) def create_and_check_model(self, config, input_values, attention_mask): model = MoonshineModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = MoonshineModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_output_attentions(self, config, input_values, attention_mask): model = MoonshineModel(config=config) model.config.layerdrop = 1.0 model.to(torch_device) model.train() outputs = model(input_values, attention_mask=attention_mask, output_attentions=True) self.parent.assertTrue(len(outputs.attentions) > 0) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask, decoder_input_ids, decoder_attention_mask = ( self.prepare_config_and_inputs() ) inputs_dict = { "input_values": input_values, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return config, inputs_dict @require_torch class MoonshineModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MoonshineModel, MoonshineForConditionalGeneration) if is_torch_available() else () pipeline_model_mapping = ( { "automatic-speech-recognition": MoonshineForConditionalGeneration, "feature-extraction": MoonshineModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = MoonshineModelTester(self) self.config_tester = ConfigTester(self, config_class=MoonshineConfig) def test_config(self): self.config_tester.run_common_tests() def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", 1) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length) subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) # Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_hidden_states_output def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) decoder_input_ids = inputs.pop("decoder_input_ids", None) inputs.pop("decoder_attention_mask", None) wte = model.get_input_embeddings() inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] # Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_resize_tokens_embeddings def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: self.skipTest(reason="test_resize_embeddings is False") for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # make sure that decoder_input_ids are resized if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_resize_embeddings_untied def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: self.skipTest(reason="test_resize_embeddings is False") original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: self.skipTest(reason="Model cannot untie embeddings") for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch class MoonshineModelIntegrationTests(unittest.TestCase): def setUp(self): self.processor_tiny = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny") self.processor_base = AutoProcessor.from_pretrained("UsefulSensors/moonshine-base") def tearDown(self): cleanup(torch_device, gc_collect=True) def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @slow def test_tiny_logits_single(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny") model.to(torch_device) inputs = self.processor_tiny(self._load_datasamples(1), return_tensors="pt") inputs.to(torch_device) outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True) # fmt: off EXPECTED_LOGITS = torch.tensor([ -9.1106, 4.5542, 6.3892, -6.8139, -7.2456, -7.9074, -7.2839, -7.6043, -8.0384, -7.8351, -7.3867, -7.2450, -7.7420, -7.3912, -7.3866, -7.6979, -7.6420, -7.0504, -7.3979, -7.2483, -8.0796, -7.3300, -7.3672, -6.8765, -7.6876, -7.2682, -6.9866, -6.7457, -7.6855, -7.3050, ]) # fmt: on torch.testing.assert_close(outputs.logits[0][0, :30].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4) @slow def test_base_logits_single(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base") model.to(torch_device) inputs = self.processor_base(self._load_datasamples(1), return_tensors="pt") inputs.to(torch_device) outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True) # fmt: off EXPECTED_LOGITS = torch.tensor([ -6.7336, 1.9482, 5.2448, -8.0277, -7.9167, -7.8956, -7.9649, -7.9348, -8.1312, -8.0616, -8.1070, -7.7696, -7.8809, -7.9450, -8.1013, -7.8177, -7.8598, -7.8257, -7.8729, -7.9657, -7.9310, -8.1024, -7.8699, -7.8231, -8.0752, -7.9764, -7.8127, -8.0536, -7.9492, -7.9290, ]) # fmt: on torch.testing.assert_close(outputs.logits[0][0, :30].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4) @slow def test_tiny_logits_batch(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny") model.to(torch_device) inputs = self.processor_tiny(self._load_datasamples(4), return_tensors="pt", padding=True) inputs.to(torch_device) outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True) # fmt: off EXPECTED_LOGITS = torch.tensor([ [-8.0109, 5.0241, 4.5979, -6.8125, -7.1675, -7.8783, -7.2152, -7.5188, -7.9077, -7.7394], [-4.4399, -1.4422, 6.6710, -6.8929, -7.3751, -7.0969, -6.5257, -7.0257, -7.2585, -7.0008], [-10.0086, 3.2859, 0.7345, -6.5557, -6.8514, -6.5308, -6.4172, -6.9484, -6.6214, -6.6229], [-10.8078, 4.0030, -0.0633, -5.0505, -5.3906, -5.4590, -5.2420, -5.4746, -5.2665, -5.3158] ]) # fmt: on torch.testing.assert_close(outputs.logits[0][:, :10].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4) @slow def test_base_logits_batch(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base") model.to(torch_device) inputs = self.processor_base(self._load_datasamples(4), return_tensors="pt", padding=True) inputs.to(torch_device) outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True) # fmt: off EXPECTED_LOGITS = torch.tensor([ [-7.7272, 1.4630, 5.2294, -7.7313, -7.6252, -7.6011, -7.6788, -7.6441, -7.8452, -7.7549], [-6.2173, -0.5891, 7.9493, -7.0694, -6.9997, -6.9982, -7.0953, -7.0831, -7.1686, -7.0137], [-7.3184, 3.1192, 3.8937, -5.7206, -5.8428, -5.7609, -5.9996, -5.8212, -5.8615, -5.8719], [-9.5475, 1.0146, 4.1179, -5.9971, -6.0614, -6.0329, -6.2103, -6.0318, -6.0789, -6.0873] ]) # fmt: on torch.testing.assert_close(outputs.logits[0][:, :10].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4) @slow def test_tiny_generation_single(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny") model.to(torch_device) audio_array = self._load_datasamples(1) inputs = self.processor_tiny(audio_array, return_tensors="pt") inputs.to(torch_device) generated_ids = model.generate(**inputs, max_new_tokens=20) transcript = self.processor_tiny.batch_decode(generated_ids, skip_special_tokens=True)[0] EXPECTED_TRANSCRIPT = "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome" self.assertEqual(transcript, EXPECTED_TRANSCRIPT) @slow def test_base_generation_single(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base") model.to(torch_device) audio_array = self._load_datasamples(1) inputs = self.processor_base(audio_array, return_tensors="pt") inputs.to(torch_device) generated_ids = model.generate(**inputs, max_new_tokens=20) transcript = self.processor_base.batch_decode(generated_ids, skip_special_tokens=True)[0] EXPECTED_TRANSCRIPT = "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome" self.assertEqual(transcript, EXPECTED_TRANSCRIPT) @slow def test_tiny_generation_batch(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny") model.to(torch_device) audio_array = self._load_datasamples(4) inputs = self.processor_tiny(audio_array, return_tensors="pt", padding=True) inputs.to(torch_device) generated_ids = model.generate(**inputs, max_new_tokens=20) transcript = self.processor_tiny.batch_decode(generated_ids, skip_special_tokens=True) # fmt: off EXPECTED_TRANSCRIPT = [ "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome", "Nor is Mr. Quilter's manner less interesting than his matter.", "He tells us that at this festive season of the year, with Christmas and Rose beef lo", "He has grave doubts whether Sir Frederick Layton's work is really Greek after all,", ] # fmt: on self.assertListEqual(transcript, EXPECTED_TRANSCRIPT) @slow def test_base_generation_batch(self): model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base") model.to(torch_device) audio_array = self._load_datasamples(4) inputs = self.processor_base(audio_array, return_tensors="pt", padding=True) inputs.to(torch_device) generated_ids = model.generate(**inputs, max_new_tokens=20) transcript = self.processor_base.batch_decode(generated_ids, skip_special_tokens=True) # fmt: off EXPECTED_TRANSCRIPT = [ "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome", "Nor is Mr. Quilter's manner less interesting than his matter.", "He tells us that at this festive season of the year, with Christmas and rose beef lo", "He has grave doubts whether Sir Frederick Layton's work is really Greek after all,", ] # fmt: on self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)