## GPT-Neo
[GPT-Neo](https://zenodo.org/records/5297715) is an open-source alternative to GPT-2 and GPT-3 models, built with Mesh TensorFlow for TPUs. GPT-Neo uses local attention in every other layer for more efficiency. It is trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), a diverse dataset consisting of 22 smaller high-quality datasets.
You can find all the original GPT-Neo checkpoints under the [EleutherAI](https://huggingface.co/EleutherAI?search_models=gpt-neo) organization.
> [!TIP]
> Click on the GPT-Neo models in the right sidebar for more examples of how to apply GPT Neo to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device=0)
pipeline("Hello, I'm a language model")
```
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
```bash
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model EleutherAI/gpt-neo-1.3B --device 0
```
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-2.7B",
quantization_config=quantization_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
inputs = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
- Pad inputs on the right because GPT-Neo uses absolute position embeddings.
## GPTNeoConfig
[[autodoc]] GPTNeoConfig
## GPTNeoModel
[[autodoc]] GPTNeoModel
- forward
## GPTNeoForCausalLM
[[autodoc]] GPTNeoForCausalLM
- forward
## GPTNeoForQuestionAnswering
[[autodoc]] GPTNeoForQuestionAnswering
- forward
## GPTNeoForSequenceClassification
[[autodoc]] GPTNeoForSequenceClassification
- forward
## GPTNeoForTokenClassification
[[autodoc]] GPTNeoForTokenClassification
- forward
## FlaxGPTNeoModel
[[autodoc]] FlaxGPTNeoModel
- __call__
## FlaxGPTNeoForCausalLM
[[autodoc]] FlaxGPTNeoForCausalLM
- __call__