# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XXX model. """ #################################################### # In this template, replace all the XXX (various casings) with your model name #################################################### import logging import tensorflow as tf from .configuration_xxx import XxxConfig from .file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable, ) from .modeling_tf_outputs import ( TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from .modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, shape_list, ) from .tokenization_utils import BatchEncoding logger = logging.getLogger(__name__) _CONFIG_FOR_DOC = "XXXConfig" _TOKENIZER_FOR_DOC = "XxxTokenizer" #################################################### # This list contrains shortcut names for some of # the pretrained weights provided with the models #################################################### TF_XXX_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xxx-base-uncased", "xxx-large-uncased", ] #################################################### # TF 2.0 Models are constructed using Keras imperative API by sub-classing # - tf.keras.layers.Layer for the layers and # - TFPreTrainedModel for the models (itself a sub-class of tf.keras.Model) #################################################### #################################################### # Here is an example of typical layer in a TF 2.0 model of the library # The classes are usually identical to the PyTorch ones and prefixed with 'TF'. # # Note that class __init__ parameters includes **kwargs (send to 'super'). # This let us have a control on class scope and variable names: # More precisely, we set the names of the class attributes (lower level layers) to # to the equivalent attributes names in the PyTorch model so we can have equivalent # class and scope structure between PyTorch and TF 2.0 models and easily load one in the other. # # See the conversion methods in modeling_tf_pytorch_utils.py for more details #################################################### TFXxxAttention = tf.keras.layers.Layer TFXxxIntermediate = tf.keras.layers.Layer TFXxxOutput = tf.keras.layers.Layer class TFXxxLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFXxxAttention(config, name="attention") self.intermediate = TFXxxIntermediate(config, name="intermediate") self.transformer_output = TFXxxOutput(config, name="output") def call(self, inputs, training=False): hidden_states, attention_mask, head_mask = inputs attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.transformer_output([intermediate_output, attention_output], training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs #################################################### # The full model without a specific pretrained or finetuning head is # provided as a tf.keras.layers.Layer usually called "TFXxxMainLayer" #################################################### class TFXxxMainLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value self.embeddings.vocab_size = value.shape[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library for TF 2.0 models def call( self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds output_attentions = inputs[6] if len(inputs) > 6 else output_attentions output_hidden_states = inputs[7] if len(inputs) > 7 else output_hidden_states return_dict = inputs[8] if len(inputs) > 8 else return_dict assert len(inputs) <= 9, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) output_attentions = inputs.get("output_attentions", output_attentions) output_hidden_states = inputs.get("output_hidden_states", output_hidden_states) return_dict = inputs.get("return_dict", return_dict) assert len(inputs) <= 9, "Too many inputs." else: input_ids = inputs output_attentions = output_attentions if output_attentions is not None else self.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states return_dict = return_dict if return_dict is not None else self.return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, tf.float32) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) #################################################### # TFXxxPreTrainedModel is a sub-class of tf.keras.Model # which take care of loading and saving pretrained weights # and various common utilities. # Here you just need to specify a few (self-explanatory) # pointers for your model. #################################################### class TFXxxPreTrainedModel(TFPreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XxxConfig base_model_prefix = "transformer" XXX_START_DOCSTRING = r""" The XXX model was proposed in `XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding `__ by.... This model is a `tf.keras.Model `__ sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.XxxConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ XXX_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`{0}`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.XxxTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`{0}`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`{0}`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`{0}`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, embedding_dim)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. training (:obj:`boolean`, `optional`, defaults to :obj:`False`): Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them (if set to :obj:`False`) for evaluation. output_attentions (:obj:`bool`, `optional`): If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare XXX Model transformer outputing raw hidden-states without any specific head on top.", XXX_START_DOCSTRING, ) class TFXxxModel(TFXxxPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXxxMainLayer(config, name="transformer") @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="xxx-base-cased", output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call(self, inputs, **kwargs): outputs = self.transformer(inputs, **kwargs) return outputs TFXxxMLMHead = tf.keras.layers.Layer @add_start_docstrings("""Xxx Model with a `language modeling` head on top. """, XXX_START_DOCSTRING) class TFXxxForMaskedLM(TFXxxPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXxxMainLayer(config, name="transformer") self.mlm = TFXxxMLMHead(config, self.transformer.embeddings, name="mlm") @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="xxx-base-cased", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.transformer.return_dict if isinstance(inputs, (tuple, list)): labels = inputs[9] if len(inputs) > 9 else labels if len(inputs) > 9: inputs = inputs[:9] elif isinstance(inputs, (dict, BatchEncoding)): labels = inputs.pop("labels", labels) outputs = self.transformer( inputs, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output, training=training) loss = None if labels is None else self.compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """XXX Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XXX_START_DOCSTRING, ) class TFXxxForSequenceClassification(TFXxxPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXxxMainLayer(config, name="transformer") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="xxx-base-cased", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.transformer.return_dict if isinstance(inputs, (tuple, list)): labels = inputs[9] if len(inputs) > 9 else labels if len(inputs) > 9: inputs = inputs[:9] elif isinstance(inputs, (dict, BatchEncoding)): labels = inputs.pop("labels", labels) outputs = self.transformer( inputs, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """XXX Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XXX_START_DOCSTRING, ) class TFXxxForMultipleChoice(TFXxxPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXxxMainLayer(config, name="transformer") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="xxx-base-cased", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above)s after the attention softmax, used to compute the weighted average in the self-attention heads. """ if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds output_attentions = inputs[6] if len(inputs) > 6 else output_attentions output_hidden_states = inputs[7] if len(inputs) > 7 else output_hidden_states return_dict = inputs[8] if len(inputs) > 8 else return_dict labels = inputs[9] if len(inputs) > 9 else labels assert len(inputs) <= 10, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) output_attentions = inputs.get("output_attentions", output_attentions) output_hidden_states = inputs.get("output_hidden_states", output_hidden_states) return_dict = inputs.get("return_dict", return_dict) labels = inputs.get("labels", labels) assert len(inputs) <= 10, "Too many inputs." else: input_ids = inputs return_dict = return_dict if return_dict is not None else self.transformer.return_dict if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) flat_inputs = [ flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict, ] outputs = self.transformer(flat_inputs, training=training) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """XXX Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XXX_START_DOCSTRING, ) class TFXxxForTokenClassification(TFXxxPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXxxMainLayer(config, name="transformer") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="xxx-base-cased", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.transformer.return_dict if isinstance(inputs, (tuple, list)): labels = inputs[9] if len(inputs) > 9 else labels if len(inputs) > 9: inputs = inputs[:9] elif isinstance(inputs, (dict, BatchEncoding)): labels = inputs.pop("labels", labels) outputs = self.transformer( inputs, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """XXX Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XXX_START_DOCSTRING, ) class TFXxxForQuestionAnswering(TFXxxPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXxxMainLayer(config, name="transformer") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="xxx-base-cased", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.transformer.return_dict if isinstance(inputs, (tuple, list)): start_positions = inputs[9] if len(inputs) > 9 else start_positions end_positions = inputs[10] if len(inputs) > 10 else end_positions if len(inputs) > 9: inputs = inputs[:9] elif isinstance(inputs, (dict, BatchEncoding)): start_positions = inputs.pop("start_positions", start_positions) end_positions = inputs.pop("end_positions", start_positions) outputs = self.transformer( inputs, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )