# coding=utf-8 # Copyright 2010, XXX authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XXX model configuration """ import logging from typing import Callable, Union from .configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) XXX_PRETRAINED_CONFIG_ARCHIVE_MAP = { "xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-config.json", "xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-config.json", } class XxxConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.XXXModel`. It is used to instantiate a XXX model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XXX `xxx-base-uncased `__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, optional, defaults to 30522): Vocabulary size of the XXX model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.XXXModel`. hidden_size (:obj:`int`, optional, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, optional, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, optional, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, optional, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"swish"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, optional, defaults to 2): The vocabulary size of the `token_type_ids` passed into :class:`~transformers.BertModel`. initializer_range (:obj:`float`, optional, defaults to 0.02): The standard deviation of the :obj:`truncated_normal_initializer` for initializing all weight matrices. layer_norm_eps (:obj:`float`, optional, defaults to 1e-5): The epsilon used by the layer normalization layers. gradient_checkpointing (:obj:`bool`, optional, defaults to :obj:`False`): If :obj:`True`, use gradient checkpointing to save memory at the expense of slower backward pass. kwargs: Additional arguments for common configurations, passed to :class:`~transformers.PretrainedConfig`. """ model_type = "xxx" def __init__( self, vocab_size: int = 50257, hidden_size: int = 1024, num_hidden_layers: int = 12, num_attention_heads: int = 12, hidden_act: Union[str, Callable] = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 512, type_vocab_size: int = 2, initializer_range: float = 0.02, layer_norm_epsilon: float = 1e-5, gradient_checkpointing: bool = False, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_epsilon = layer_norm_epsilon self.gradient_checkpointing = gradient_checkpointing