# LXMERT
## Overview
The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan & Mohit Bansal. It is a series of bidirectional transformer encoders
(one for the vision modality, one for the language modality, and then one to fuse both modalities) pretrained using a
combination of masked language modeling, visual-language text alignment, ROI-feature regression, masked
visual-attribute modeling, masked visual-object modeling, and visual-question answering objectives. The pretraining
consists of multiple multi-modal datasets: MSCOCO, Visual-Genome + Visual-Genome Question Answering, VQA 2.0, and GQA.
The abstract from the paper is the following:
*Vision-and-language reasoning requires an understanding of visual concepts, language semantics, and, most importantly,
the alignment and relationships between these two modalities. We thus propose the LXMERT (Learning Cross-Modality
Encoder Representations from Transformers) framework to learn these vision-and-language connections. In LXMERT, we
build a large-scale Transformer model that consists of three encoders: an object relationship encoder, a language
encoder, and a cross-modality encoder. Next, to endow our model with the capability of connecting vision and language
semantics, we pre-train the model with large amounts of image-and-sentence pairs, via five diverse representative
pretraining tasks: masked language modeling, masked object prediction (feature regression and label classification),
cross-modality matching, and image question answering. These tasks help in learning both intra-modality and
cross-modality relationships. After fine-tuning from our pretrained parameters, our model achieves the state-of-the-art
results on two visual question answering datasets (i.e., VQA and GQA). We also show the generalizability of our
pretrained cross-modality model by adapting it to a challenging visual-reasoning task, NLVR, and improve the previous
best result by 22% absolute (54% to 76%). Lastly, we demonstrate detailed ablation studies to prove that both our novel
model components and pretraining strategies significantly contribute to our strong results; and also present several
attention visualizations for the different encoders*
This model was contributed by [eltoto1219](https://huggingface.co/eltoto1219). The original code can be found [here](https://github.com/airsplay/lxmert).
## Usage tips
- Bounding boxes are not necessary to be used in the visual feature embeddings, any kind of visual-spacial features
will work.
- Both the language hidden states and the visual hidden states that LXMERT outputs are passed through the
cross-modality layer, so they contain information from both modalities. To access a modality that only attends to
itself, select the vision/language hidden states from the first input in the tuple.
- The bidirectional cross-modality encoder attention only returns attention values when the language modality is used
as the input and the vision modality is used as the context vector. Further, while the cross-modality encoder
contains self-attention for each respective modality and cross-attention, only the cross attention is returned and
both self attention outputs are disregarded.
## Resources
- [Question answering task guide](../tasks/question_answering)
## LxmertConfig
[[autodoc]] LxmertConfig
## LxmertTokenizer
[[autodoc]] LxmertTokenizer
## LxmertTokenizerFast
[[autodoc]] LxmertTokenizerFast
## Lxmert specific outputs
[[autodoc]] models.lxmert.modeling_lxmert.LxmertModelOutput
[[autodoc]] models.lxmert.modeling_lxmert.LxmertForPreTrainingOutput
[[autodoc]] models.lxmert.modeling_lxmert.LxmertForQuestionAnsweringOutput
[[autodoc]] models.lxmert.modeling_tf_lxmert.TFLxmertModelOutput
[[autodoc]] models.lxmert.modeling_tf_lxmert.TFLxmertForPreTrainingOutput
## LxmertModel
[[autodoc]] LxmertModel
- forward
## LxmertForPreTraining
[[autodoc]] LxmertForPreTraining
- forward
## LxmertForQuestionAnswering
[[autodoc]] LxmertForQuestionAnswering
- forward
## TFLxmertModel
[[autodoc]] TFLxmertModel
- call
## TFLxmertForPreTraining
[[autodoc]] TFLxmertForPreTraining
- call