import argparse from pathlib import Path import torch from tqdm import tqdm from sacrebleu import corpus_bleu from transformers import T5ForConditionalGeneration, T5Tokenizer def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_translations(lns, output_file_path, model_size, batch_size, device): output_file = Path(output_file_path).open("w") model = T5ForConditionalGeneration.from_pretrained(model_size) model.to(device) tokenizer = T5Tokenizer.from_pretrained(model_size) # update config with summarization specific params task_specific_params = model.config.task_specific_params if task_specific_params is not None: model.config.update(task_specific_params.get("translation_en_to_de", {})) for batch in tqdm(list(chunks(lns, batch_size))): batch = [model.config.prefix + text for text in batch] dct = tokenizer.batch_encode_plus(batch, max_length=512, return_tensors="pt", pad_to_max_length=True) input_ids = dct["input_ids"].to(device) attention_mask = dct["attention_mask"].to(device) translations = model.generate(input_ids=input_ids, attention_mask=attention_mask) dec = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in translations] for hypothesis in dec: output_file.write(hypothesis + "\n") output_file.flush() def calculate_bleu_score(output_lns, refs_lns, score_path): bleu = corpus_bleu(output_lns, [refs_lns]) result = "BLEU score: {}".format(bleu.score) score_file = Path(score_path).open("w") score_file.write(result) def run_generate(): parser = argparse.ArgumentParser() parser.add_argument( "model_size", type=str, help="T5 model size, either 't5-small', 't5-base', 't5-large', 't5-3b', 't5-11b'. Defaults to 't5-base'.", default="t5-base", ) parser.add_argument( "input_path", type=str, help="like wmt/newstest2013.en", ) parser.add_argument( "output_path", type=str, help="where to save translation", ) parser.add_argument( "reference_path", type=str, help="like wmt/newstest2013.de", ) parser.add_argument( "score_path", type=str, help="where to save the bleu score", ) parser.add_argument( "--batch_size", type=int, default=16, required=False, help="batch size: how many to summarize at a time", ) parser.add_argument( "--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.", ) args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") dash_pattern = (" ##AT##-##AT## ", "-") input_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in open(args.input_path).readlines()] generate_translations(input_lns, args.output_path, args.model_size, args.batch_size, args.device) output_lns = [x.strip() for x in open(args.output_path).readlines()] refs_lns = [x.strip().replace(dash_pattern[0], dash_pattern[1]) for x in open(args.reference_path).readlines()] calculate_bleu_score(output_lns, refs_lns, args.score_path) if __name__ == "__main__": run_generate()