#!/usr/bin/env python3 import argparse import logging from tqdm import trange import torch import torch.nn.functional as F import numpy as np from pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) def top_k_logits(logits, k): if k == 0: return logits values, _ = torch.topk(logits, k) min_values = values[:, -1] return torch.where(logits < min_values, torch.ones_like(logits, dtype=logits.dtype) * -1e10, logits) def sample_sequence(model, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, device='cuda', sample=True): if start_token is None: assert context is not None, 'Specify exactly one of start_token and context!' context = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(0).repeat(batch_size, 1) else: assert context is None, 'Specify exactly one of start_token and context!' context = torch.full((batch_size, 1), start_token, device=device, dtype=torch.long) prev = context output = context past = None with torch.no_grad(): for i in trange(length): logits, past = model(prev, past=past) logits = logits[:, -1, :] / temperature logits = top_k_logits(logits, k=top_k) log_probs = F.softmax(logits, dim=-1) if sample: prev = torch.multinomial(log_probs, num_samples=1) else: _, prev = torch.topk(log_probs, k=1, dim=-1) output = torch.cat((output, prev), dim=1) return output def run_model(): parser = argparse.ArgumentParser() parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint') parser.add_argument("--seed", type=int, default=0) parser.add_argument("--nsamples", type=int, default=1) parser.add_argument("--batch_size", type=int, default=-1) parser.add_argument("--length", type=int, default=-1) parser.add_argument("--temperature", type=int, default=1) parser.add_argument("--top_k", type=int, default=0) parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.') args = parser.parse_args() print(args) if args.batch_size == -1: args.batch_size = 1 assert args.nsamples % args.batch_size == 0 np.random.seed(args.seed) torch.random.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path) model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path) model.to(device) model.eval() if args.length == -1: args.length = model.config.n_ctx // 2 elif args.length > model.config.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx) while not args.unconditional: if not args.unconditional: raw_text = input("Model prompt >>> ") while not raw_text: print('Prompt should not be empty!') raw_text = input("Model prompt >>> ") context_tokens = enc.encode(raw_text) generated = 0 for _ in range(args.nsamples // args.batch_size): out = sample_sequence( model=model, length=args.length, context=context_tokens if not args.unconditional else None, start_token=enc.encoder['<|endoftext|>'] if args.unconditional else None, batch_size=args.batch_size, temperature=args.temperature, top_k=args.top_k, device=device ) out = out[:, len(context_tokens):].tolist() for i in range(args.batch_size): generated += 1 text = enc.decode(out[i]) print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) print(text) print("=" * 80) if __name__ == '__main__': run_model()