import argparse import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer logger = getLogger(__name__) try: from .utils import calculate_bleu, calculate_rouge, use_task_specific_params except ImportError: from utils import calculate_bleu, calculate_rouge, use_task_specific_params DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def generate_summaries_or_translations( examples: List[str], out_file: str, model_name: str, batch_size: int = 8, device: str = DEFAULT_DEVICE, fp16=False, task="summarization", decoder_start_token_id=None, **generate_kwargs, ) -> Dict: """Save model.generate results to , and return how long it took.""" fout = Path(out_file).open("w", encoding="utf-8") model_name = str(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) if fp16: model = model.half() tokenizer = AutoTokenizer.from_pretrained(model_name) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. start_time = time.time() # update config with task specific params use_task_specific_params(model, task) for examples_chunk in tqdm(list(chunks(examples, batch_size))): if "t5" in model_name: examples_chunk = [model.config.prefix + text for text in examples_chunk] batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device) summaries = model.generate( input_ids=batch.input_ids, attention_mask=batch.attention_mask, decoder_start_token_id=decoder_start_token_id, **generate_kwargs, ) dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) for hypothesis in dec: fout.write(hypothesis + "\n") fout.flush() fout.close() runtime = int(time.time() - start_time) # seconds n_obs = len(examples) return dict(n_obs=n_obs, runtime=runtime, seconds_per_sample=round(runtime / n_obs, 4)) def run_generate(): parser = argparse.ArgumentParser() parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") parser.add_argument("input_path", type=str, help="like cnn_dm/test.source") parser.add_argument("save_path", type=str, help="where to save summaries") parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt") parser.add_argument( "--score_path", type=str, required=False, default="metrics.json", help="where to save the rouge score in json format", ) parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.") parser.add_argument("--task", type=str, default="summarization", help="typically translation or summarization") parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") parser.add_argument( "--decoder_start_token_id", type=int, default=None, required=False, help="Defaults to using config", ) parser.add_argument( "--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all." ) parser.add_argument("--fp16", action="store_true") args = parser.parse_args() examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] if args.n_obs > 0: examples = examples[: args.n_obs] Path(args.save_path).parent.mkdir(exist_ok=True) if args.reference_path is None and Path(args.score_path).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.") runtime_metrics = generate_summaries_or_translations( examples, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fp16=args.fp16, task=args.task, decoder_start_token_id=args.decoder_start_token_id, ) if args.reference_path is None: return # Compute scores score_fn = calculate_bleu if "translation" in args.task else calculate_rouge output_lns = [x.rstrip() for x in open(args.save_path).readlines()] reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)] scores: dict = score_fn(output_lns, reference_lns) scores.update(runtime_metrics) print(scores) if args.score_path is not None: json.dump(scores, open(args.score_path, "w")) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate()