# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Model class. """ from __future__ import absolute_import, division, print_function, unicode_literals import logging from .tokenization_bert import BertTokenizer from .tokenization_openai import OpenAIGPTTokenizer from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_transfo_xl import TransfoXLTokenizer from .tokenization_xlnet import XLNetTokenizer from .tokenization_xlm import XLMTokenizer logger = logging.getLogger(__name__) class AutoTokenizer(object): r""":class:`~pytorch_transformers.AutoTokenizer` is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` class method. The `from_pretrained()` method take care of returning the correct tokenizer class instance using pattern matching on the `pretrained_model_name_or_path` string. The tokenizer class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `bert`: BertTokenizer (Bert model) - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model) - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model) - contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model) - contains `xlnet`: XLNetTokenizer (XLNet model) - contains `xlm`: XLMTokenizer (XLM model) This class cannot be instantiated using `__init__()` (throw an error). """ def __init__(self): raise EnvironmentError("AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method.") @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate a one of the tokenizer classes of the library from a pre-trained model vocabulary. The tokenizer class to instantiate is selected as the first pattern matching in the `pretrained_model_name_or_path` string (in the following order): - contains `bert`: BertTokenizer (Bert model) - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model) - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model) - contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model) - contains `xlnet`: XLNetTokenizer (XLNet model) - contains `xlm`: XLMTokenizer (XLM model) Params: **pretrained_model_name_or_path**: either: - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download and cache if not already stored in cache (e.g. 'bert-base-uncased'). - a path to a `directory` containing a configuration file saved using the `save_pretrained(save_directory)` method. - a path or url to a saved configuration `file`. **cache_dir**: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. Examples:: >>> config = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 and cache. >>> config = AutoTokenizer.from_pretrained('./test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')` """ if 'bert' in pretrained_model_name_or_path: return BertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) elif 'openai-gpt' in pretrained_model_name_or_path: return OpenAIGPTTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) elif 'gpt2' in pretrained_model_name_or_path: return GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) elif 'transfo-xl' in pretrained_model_name_or_path: return TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) elif 'xlnet' in pretrained_model_name_or_path: return XLNetTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) elif 'xlm' in pretrained_model_name_or_path: return XLMTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) raise ValueError("Unrecognized model identifier in {}. Should contains one of " "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', " "'xlm'".format(pretrained_model_name_or_path))