PyTorch TensorFlow Flax SDPA
# RoBERTa [RoBERTa](https://huggingface.co/papers/1907.11692) improves BERT with new pretraining objectives, demonstrating [BERT](./bert) was undertrained and training design is important. The pretraining objectives include dynamic masking, sentence packing, larger batches and a byte-level BPE tokenizer. You can find all the original RoBERTa checkpoints under the [Facebook AI](https://huggingface.co/FacebookAI) organization. > [!TIP] > Click on the RoBERTa models in the right sidebar for more examples of how to apply RoBERTa to different language tasks. The example below demonstrates how to predict the `` token with [`Pipeline`], [`AutoModel`], and from the command line. ```py import torch from transformers import pipeline pipeline = pipeline( task="fill-mask", model="FacebookAI/roberta-base", torch_dtype=torch.float16, device=0 ) pipeline("Plants create through a process known as photosynthesis.") ``` ```py import torch from transformers import AutoModelForMaskedLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "FacebookAI/roberta-base", ) model = AutoModelForMaskedLM.from_pretrained( "FacebookAI/roberta-base", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa" ) inputs = tokenizer("Plants create through a process known as photosynthesis.", return_tensors="pt").to("cuda") with torch.no_grad(): outputs = model(**inputs) predictions = outputs.logits masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1] predicted_token_id = predictions[0, masked_index].argmax(dim=-1) predicted_token = tokenizer.decode(predicted_token_id) print(f"The predicted token is: {predicted_token}") ``` ```bash echo -e "Plants create through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/roberta-base --device 0 ``` ## Notes - RoBERTa doesn't have `token_type_ids` so you don't need to indicate which token belongs to which segment. Separate your segments with the separation token `tokenizer.sep_token` or ``. ## RobertaConfig [[autodoc]] RobertaConfig ## RobertaTokenizer [[autodoc]] RobertaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## RobertaTokenizerFast [[autodoc]] RobertaTokenizerFast - build_inputs_with_special_tokens ## RobertaModel [[autodoc]] RobertaModel - forward ## RobertaForCausalLM [[autodoc]] RobertaForCausalLM - forward ## RobertaForMaskedLM [[autodoc]] RobertaForMaskedLM - forward ## RobertaForSequenceClassification [[autodoc]] RobertaForSequenceClassification - forward ## RobertaForMultipleChoice [[autodoc]] RobertaForMultipleChoice - forward ## RobertaForTokenClassification [[autodoc]] RobertaForTokenClassification - forward ## RobertaForQuestionAnswering [[autodoc]] RobertaForQuestionAnswering - forward ## TFRobertaModel [[autodoc]] TFRobertaModel - call ## TFRobertaForCausalLM [[autodoc]] TFRobertaForCausalLM - call ## TFRobertaForMaskedLM [[autodoc]] TFRobertaForMaskedLM - call ## TFRobertaForSequenceClassification [[autodoc]] TFRobertaForSequenceClassification - call ## TFRobertaForMultipleChoice [[autodoc]] TFRobertaForMultipleChoice - call ## TFRobertaForTokenClassification [[autodoc]] TFRobertaForTokenClassification - call ## TFRobertaForQuestionAnswering [[autodoc]] TFRobertaForQuestionAnswering - call ## FlaxRobertaModel [[autodoc]] FlaxRobertaModel - __call__ ## FlaxRobertaForCausalLM [[autodoc]] FlaxRobertaForCausalLM - __call__ ## FlaxRobertaForMaskedLM [[autodoc]] FlaxRobertaForMaskedLM - __call__ ## FlaxRobertaForSequenceClassification [[autodoc]] FlaxRobertaForSequenceClassification - __call__ ## FlaxRobertaForMultipleChoice [[autodoc]] FlaxRobertaForMultipleChoice - __call__ ## FlaxRobertaForTokenClassification [[autodoc]] FlaxRobertaForTokenClassification - __call__ ## FlaxRobertaForQuestionAnswering [[autodoc]] FlaxRobertaForQuestionAnswering - __call__