PyTorch FlashAttention SDPA
# Aria [Aria](https://huggingface.co/papers/2410.05993) is a multimodal mixture-of-experts (MoE) model. The goal of this model is to open-source a training recipe for creating a multimodal native model from scratch. Aria has 3.9B and 3.5B activated parameters per visual and text token respectively. Text is handled by a MoE decoder and visual inputs are handled by a lightweight visual encoder. It is trained in 4 stages, language pretraining, multimodal pretraining, multimodal long-context pretraining, and multimodal post-training. You can find all the original Aria checkpoints under the [Aria](https://huggingface.co/rhymes-ai?search_models=aria) organization. > [!TIP] > Click on the Aria models in the right sidebar for more examples of how to apply Aria to different multimodal tasks. The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class. ```python import torch from transformers import pipeline pipeline = pipeline( "image-to-text", model="rhymes-ai/Aria", device=0, torch_dtype=torch.bfloat16 ) pipeline( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", text="What is shown in this image?" ) ``` ```python import torch from transformers import AutoModelForCausalLM, AutoProcessor model = AutoModelForCausalLM.from_pretrained( "rhymes-ai/Aria", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="sdpa" ) processor = AutoProcessor.from_pretrained("rhymes-ai/Aria") messages = [ { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"}, {"type": "text", "text": "What is shown in this image?"}, ] }, ] inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt") ipnuts = inputs.to(model.device, torch.bfloat16) output = model.generate( **inputs, max_new_tokens=15, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1]:] response = processor.decode(output_ids, skip_special_tokens=True) print(response) ``` Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends. The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4 and the [rhymes-ai/Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) checkpoint. This checkpoint replaces grouped GEMM with `torch.nn.Linear` layers for easier quantization. ```py # pip install torchao import torch from transformers import TorchAoConfig, AutoModelForCausalLM, AutoProcessor quantization_config = TorchAoConfig("int4_weight_only", group_size=128) model = AutoModelForCausalLM.from_pretrained( "rhymes-ai/Aria-sequential_mlp", torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config ) processor = AutoProcessor.from_pretrained( "rhymes-ai/Aria-sequential_mlp", ) messages = [ { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"}, {"type": "text", "text": "What is shown in this image?"}, ] }, ] inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt") inputs = inputs.to(model.device, torch.bfloat16) output = model.generate( **inputs, max_new_tokens=15, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1]:] response = processor.decode(output_ids, skip_special_tokens=True) print(response) ``` ## AriaImageProcessor [[autodoc]] AriaImageProcessor ## AriaProcessor [[autodoc]] AriaProcessor ## AriaTextConfig [[autodoc]] AriaTextConfig ## AriaConfig [[autodoc]] AriaConfig ## AriaTextModel [[autodoc]] AriaTextModel ## AriaModel [[autodoc]] AriaModel ## AriaTextForCausalLM [[autodoc]] AriaTextForCausalLM ## AriaForConditionalGeneration [[autodoc]] AriaForConditionalGeneration - forward