# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import JanusImageProcessor class JanusImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=384, min_resolution=30, max_resolution=200, do_resize=True, size=None, do_normalize=True, image_mean=[1.0, 1.0, 1.0], image_std=[1.0, 1.0, 1.0], do_convert_rgb=True, ): size = size if size is not None else {"height": 384, "width": 384} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.prepare_image_inputs def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class JanusImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = JanusImageProcessor if is_vision_available() else None # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.setUp with CLIP->Janus def setUp(self): super().setUp() self.image_processor_tester = JanusImageProcessingTester(self) @property # Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.image_processor_dict def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 384, "width": 384}) self.assertEqual(image_processor.image_mean, [1.0, 1.0, 1.0]) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, image_mean=[1.0, 2.0, 1.0] ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.image_mean, [1.0, 2.0, 1.0]) def test_call_pil(self): image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test Non batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = (1, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) def test_call_numpy(self): image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = (1, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) def test_call_pytorch(self): image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = (1, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) def test_nested_input(self): image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True) # Test batched as a list of images. encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_output_image_shape = (7, 3, 384, 384) self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape) # Test batched as a nested list of images, where each sublist is one batch. image_inputs_nested = [image_inputs[:3], image_inputs[3:]] encoded_images_nested = image_processing(image_inputs_nested, return_tensors="pt").pixel_values expected_output_image_shape = (7, 3, 384, 384) self.assertEqual(tuple(encoded_images_nested.shape), expected_output_image_shape) # Image processor should return same pixel values, independently of input format. self.assertTrue((encoded_images_nested == encoded_images).all()) @unittest.skip(reason="Not supported") def test_call_numpy_4_channels(self): pass