PyTorch TensorFlow Flax SDPA FlashAttention
# GPT [GPT (Generative Pre-trained Transformer)](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) focuses on effectively learning text representations and transferring them to tasks. This model trains the Transformer decoder to predict the next word, and then fine-tuned on labeled data. GPT can generate high-quality text, making it well-suited for a variety of natural language understanding tasks such as textual entailment, question answering, semantic similarity, and document classification. You can find all the original GPT checkpoints under the [OpenAI community](https://huggingface.co/openai-community/openai-gpt) organization. > [!TIP] > Click on the GPT models in the right sidebar for more examples of how to apply GPT to different language tasks. The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line. ```python import torch from transformers import pipeline generator = pipeline(task="text-generation", model="openai-community/gpt", torch_dtype=torch.float16, device=0) output = generator("The future of AI is", max_length=50, do_sample=True) print(output[0]["generated_text"]) ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt") model = AutoModelForCausalLM.from_pretrained("openai-community/openai-gpt", torch_dtype=torch.float16) inputs = tokenizer("The future of AI is", return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ```bash echo -e "The future of AI is" | transformers-cli run --task text-generation --model openai-community/openai-gpt --device 0 ``` ## Notes - Inputs should be padded on the right because GPT uses absolute position embeddings. ## OpenAIGPTConfig [[autodoc]] OpenAIGPTConfig ## OpenAIGPTModel [[autodoc]] OpenAIGPTModel - forward ## OpenAIGPTLMHeadModel [[autodoc]] OpenAIGPTLMHeadModel - forward ## OpenAIGPTDoubleHeadsModel [[autodoc]] OpenAIGPTDoubleHeadsModel - forward ## OpenAIGPTForSequenceClassification [[autodoc]] OpenAIGPTForSequenceClassification - forward ## OpenAIGPTTokenizer [[autodoc]] OpenAIGPTTokenizer ## OpenAIGPTTokenizerFast [[autodoc]] OpenAIGPTTokenizerFast ## TFOpenAIGPTModel [[autodoc]] TFOpenAIGPTModel - call ## TFOpenAIGPTLMHeadModel [[autodoc]] TFOpenAIGPTLMHeadModel - call ## TFOpenAIGPTDoubleHeadsModel [[autodoc]] TFOpenAIGPTDoubleHeadsModel - call ## TFOpenAIGPTForSequenceClassification [[autodoc]] TFOpenAIGPTForSequenceClassification - call