# Copyright 2020 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import copy import datetime import gc import inspect import random import tempfile import unittest import warnings import numpy as np import pytest from packaging import version from parameterized import parameterized from transformers import AutoConfig, AutoProcessor, AutoTokenizer, is_torch_available, logging, pipeline from transformers.testing_utils import ( CaptureLogger, is_flaky, require_accelerate, require_flash_attn, require_flash_attn_3, require_optimum_quanto, require_read_token, require_torch, require_torch_accelerator, require_torch_gpu, require_torch_greater_or_equal, require_torch_multi_accelerator, require_torch_sdpa, set_config_for_less_flaky_test, set_model_for_less_flaky_test, set_model_tester_for_less_flaky_test, slow, torch_device, ) from transformers.utils import is_ipex_available, is_torchdynamo_exporting if is_torch_available(): import torch import torch.nn.functional as F from transformers import ( AutoModelForCausalLM, AutoModelForImageTextToText, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq, AutoModelForVision2Seq, BartForConditionalGeneration, BartTokenizer, GPT2LMHeadModel, GPT2Tokenizer, ImageGPTForCausalImageModeling, SpeechEncoderDecoderModel, T5ForConditionalGeneration, ) from transformers.cache_utils import ( Cache, DynamicCache, EncoderDecoderCache, HybridCache, QuantoQuantizedCache, StaticCache, ) from transformers.generation import ( BeamSampleDecoderOnlyOutput, BeamSampleEncoderDecoderOutput, BeamSearchDecoderOnlyOutput, BeamSearchEncoderDecoderOutput, CompileConfig, DisjunctiveConstraint, GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput, GenerationConfig, GenerationMixin, GreedySearchDecoderOnlyOutput, GreedySearchEncoderDecoderOutput, LogitsProcessorList, MaxLengthCriteria, MinLengthLogitsProcessor, PhrasalConstraint, PromptLookupCandidateGenerator, SampleDecoderOnlyOutput, SampleEncoderDecoderOutput, StoppingCriteria, StoppingCriteriaList, SynthIDTextWatermarkingConfig, WatermarkDetector, WatermarkingConfig, ) from transformers.generation.candidate_generator import ( AssistedCandidateGenerator, AssistedCandidateGeneratorDifferentTokenizers, ) from transformers.generation.utils import _speculative_sampling from unittest.mock import patch from transformers.utils import is_sklearn_available # TODO: raushan remove this when VLMs start accepting input embeds VLM_CLASS_NAMES = [ "llava", "idefics2", "idefics3", "mllama", "paligemma", "emu3", "gotocr2", "qwen2vl", "qwen2_5_vl", "ayavision", "janus", "gemma3", "mistral3", "chameleon", "internvl", "qwen2_5omni", # the file is named `qwen2_5_omni`, but the model class is `Qwen2_5Omni` ] class GenerationTesterMixin: input_name = "input_ids" model_tester = None max_new_tokens = 3 def prepare_config_and_inputs_for_generate(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # We don't want a few model inputs in our model input dictionary for generation tests input_keys_to_ignore = [ # we don't want to mask attention heads "head_mask", "decoder_head_mask", "cross_attn_head_mask", # we don't want encoder-decoder models to start from filled decoder ids "decoder_input_ids", "decoder_attention_mask", # we'll set cache use in each test differently "use_cache", # Ignore labels if it is in the input dict "labels", # model-specific exceptions should overload/overwrite this function ] filtered_inputs_dict = { k: v[:batch_size, ...] if isinstance(v, torch.Tensor) else v for k, v in inputs_dict.items() if k not in input_keys_to_ignore } # It is important set `eos_token_id` to `None` to avoid early stopping (would break for length-based checks) text_gen_config = config.get_text_config(decoder=True) if text_gen_config.eos_token_id is not None and text_gen_config.pad_token_id is None: text_gen_config.pad_token_id = ( text_gen_config.eos_token_id if isinstance(text_gen_config.eos_token_id, int) else text_gen_config.eos_token_id[0] ) text_gen_config.eos_token_id = None text_gen_config.forced_eos_token_id = None return config, filtered_inputs_dict def _check_similar_generate_outputs(self, output_1, output_2, atol=1e-5, rtol=1e-5): """ Checks whether a pair of generate outputs are similar. Two `generate` call outputs are considered similar in the following situations: 1. The sequences are the same 2. The sequences are different, but the scores up to (and including) the first mismatch are nearly identical """ # scores doesn't include data regarding decoder input tokens decoder_input_length = output_1.sequences.shape[1] - len(output_1.scores) output_matches = output_1.sequences == output_2.sequences has_matching_outputs = output_matches.all() has_matching_scores = None if not has_matching_outputs: for batch_idx in range(output_1.sequences.shape[0]): batch_matches = output_matches[batch_idx] if batch_matches.all(): continue first_mismatch_idx = batch_matches.int().argmin() # gets the index of the first False first_mismatch_idx -= decoder_input_length output_1_first_mismatch_scores = output_1.scores[first_mismatch_idx][batch_idx] output_2_first_mismatch_scores = output_2.scores[first_mismatch_idx][batch_idx] has_matching_scores = torch.allclose( output_1_first_mismatch_scores, output_2_first_mismatch_scores, rtol=atol, atol=rtol ) if not has_matching_scores: break self.assertTrue(has_matching_outputs or has_matching_scores) def _get_logits_processor_kwargs(self, do_sample=False, config=None): logits_processor_kwargs = { "bad_words_ids": [[1, 0]], "repetition_penalty": 1.2, "remove_invalid_values": True, } if do_sample: logits_processor_kwargs.update( { "top_k": 10, "top_p": 0.7, "temperature": 0.7, } ) # TODO (joao, raushan): see this comment for a long-term fix # https://github.com/huggingface/transformers/pull/33593#issuecomment-2361824264) # This is a band-aid for VLM models, to ensure they don't generate image/video tokens which would cause them # to crash. On pretrained models this isn't a risk, as they are trained to not generate these tokens. if config is not None: for key in [ "image_token_id", "video_token_id", "audio_token_id", "vision_start_token_id", "audio_start_token_id", "audio_end_token_id", "vision_end_token_id", ]: token_index = getattr(config, key, None) if token_index is None and hasattr(self, "model_tester"): token_index = getattr(self.model_tester, key, None) if token_index is not None and token_index < config.get_text_config().vocab_size: logits_processor_kwargs["bad_words_ids"].append([token_index]) return logits_processor_kwargs def _get_beam_kwargs(self, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": 2, "num_return_sequences": num_return_sequences, } return beam_kwargs def _get_diverse_beam_kwargs(self, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": 2, "num_return_sequences": num_return_sequences, "num_beam_groups": 2, # one beam per group "diversity_penalty": 2.0, } return beam_kwargs def _get_constrained_beam_kwargs(self, num_return_sequences=1): beam_kwargs = { "early_stopping": False, "length_penalty": 2.0, "num_beams": num_return_sequences * 4, "num_return_sequences": num_return_sequences, } return beam_kwargs def _greedy_generate( self, model, inputs_dict, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, num_beams=1, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_scores=output_scores, output_logits=output_logits, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _sample_generate( self, model, inputs_dict, num_return_sequences, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): torch.manual_seed(0) logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=True, config=model.config) output_generate = model.generate( do_sample=True, num_beams=1, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, num_return_sequences=num_return_sequences, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _beam_search_generate( self, model, inputs_dict, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _beam_sample_generate( self, model, inputs_dict, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): torch.manual_seed(0) logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=True, config=model.config) output_generate = model.generate( do_sample=True, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _group_beam_search_generate( self, model, inputs_dict, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _constrained_beam_search_generate( self, model, inputs_dict, constraints, beam_kwargs, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_scores=output_scores, output_logits=output_logits, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict_in_generate=return_dict_in_generate, constraints=constraints, use_cache=use_cache, **beam_kwargs, **logits_processor_kwargs, **inputs_dict, ) return output_generate def _contrastive_generate( self, model, inputs_dict, output_scores=False, output_logits=False, output_attentions=False, output_hidden_states=False, return_dict_in_generate=False, use_cache=True, ): contrastive_search_kwargs = { "penalty_alpha": 0.6, "top_k": 5, } logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, num_beams=1, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_scores=output_scores, output_logits=output_logits, return_dict_in_generate=return_dict_in_generate, use_cache=use_cache, **logits_processor_kwargs, **contrastive_search_kwargs, **inputs_dict, ) return output_generate @pytest.mark.generate def test_greedy_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate(model=model, inputs_dict=inputs_dict) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) @pytest.mark.generate def test_greedy_generate_dict_outputs(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, inputs_dict=inputs_dict, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput) self._check_generate_outputs(output_generate, model.config) @pytest.mark.generate def test_greedy_generate_dict_outputs_use_cache(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") if any(model_name in model_class.__name__.lower() for model_name in ["rwkv"]): self.skipTest(reason="Won't fix: model with non-standard dictionary output shapes") config.is_decoder = True model = model_class(config).to(torch_device).eval() output_generate = self._greedy_generate( model=model, inputs_dict=inputs_dict, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=True, # Enable cache ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self._check_generate_outputs(output_generate, model.config, use_cache=True) @pytest.mark.generate def test_sample_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() output_generate = self._sample_generate(model=model, inputs_dict=inputs_dict, num_return_sequences=1) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) @pytest.mark.generate def test_sample_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() output_generate = self._sample_generate( model=model, inputs_dict=inputs_dict, num_return_sequences=2, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, SampleEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, SampleDecoderOnlyOutput) self._check_generate_outputs(output_generate, model.config, num_return_sequences=2) @pytest.mark.generate def test_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_search_generate(model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) @pytest.mark.generate def test_beam_search_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) self._check_generate_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @pytest.mark.generate def test_beam_search_generate_dict_outputs_use_cache(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") if any(model_name in model_class.__name__.lower() for model_name in ["rwkv"]): self.skipTest(reason="Won't fix: model with non-standard dictionary output shapes") if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() config.is_decoder = True model = model_class(config).to(torch_device).eval() output_generate = self._beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=True, # Enable cache ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self._check_generate_outputs( output_generate, model.config, use_cache=True, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @require_accelerate @require_torch_multi_accelerator @pytest.mark.generate def test_model_parallel_beam_search(self): if "xpu" in torch_device: if not (is_ipex_available("2.5") or version.parse(torch.__version__) >= version.parse("2.6")): self.skipTest(reason="device_map='auto' does not work with XPU devices") for model_class in self.all_generative_model_classes: if model_class._no_split_modules is None: continue config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).eval() with tempfile.TemporaryDirectory() as tmp_dir: model.cpu().save_pretrained(tmp_dir) new_model = model_class.from_pretrained(tmp_dir, device_map="auto") new_model.generate( max_new_tokens=self.max_new_tokens, num_beams=2, **inputs_dict, ) @pytest.mark.generate def test_beam_sample_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_sample_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) @pytest.mark.generate def test_beam_sample_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_beam_kwargs() output_generate = self._beam_sample_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput) self._check_generate_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @pytest.mark.generate def test_generate_without_input_ids(self): config, _ = self.prepare_config_and_inputs_for_generate() # if no bos token id => cannot generate from None if config.bos_token_id is None: self.skipTest(reason="bos_token_id is None") # hack in case they are equal, otherwise the attn mask will be [0] if config.bos_token_id == config.pad_token_id: config.pad_token_id = None for model_class in self.all_generative_model_classes: model = model_class(config).to(torch_device) model.eval() output_ids_generate = model.generate( do_sample=False, max_new_tokens=self.max_new_tokens, remove_invalid_values=True ) self.assertIsNotNone(output_ids_generate) @pytest.mark.generate def test_group_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() # check `generate()` and `group_beam_search()` are equal beam_kwargs = self._get_diverse_beam_kwargs() output_generate = self._group_beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) # check `group_beam_search` for higher than 1 `num_return_sequences` num_return_sequences = 2 beam_kwargs = self._get_diverse_beam_kwargs(num_return_sequences=num_return_sequences) output_generate = self._group_beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) @pytest.mark.generate def test_group_beam_search_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() beam_kwargs = self._get_diverse_beam_kwargs() output_generate = self._group_beam_search_generate( model=model, inputs_dict=inputs_dict, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) self._check_generate_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @is_flaky() # Some models have position-specific tokens, this test may try to force them in an invalid position @pytest.mark.generate def test_constrained_beam_search_generate(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() model = model_class(config).to(torch_device).eval() # Sample constraints min_id = 3 max_id = config.get_text_config(decoder=True).vocab_size force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] constraints = [ PhrasalConstraint(force_tokens), ] beam_kwargs = self._get_constrained_beam_kwargs() output_generate = self._constrained_beam_search_generate( model=model, inputs_dict=inputs_dict, constraints=constraints, beam_kwargs=beam_kwargs, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) for generation_output in output_generate: self._check_sequence_inside_sequence(force_tokens, generation_output) # check`constrained_beam_search` for higher than 1 `num_return_sequences` # Sample constraints force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] constraints = [ PhrasalConstraint(force_tokens), ] beam_kwargs = self._get_constrained_beam_kwargs(num_return_sequences=2) output_generate = self._constrained_beam_search_generate( model=model, inputs_dict=inputs_dict, constraints=constraints, beam_kwargs=beam_kwargs, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) for generation_output in output_generate: self._check_sequence_inside_sequence(force_tokens, generation_output) @is_flaky() # Some models have position-specific tokens, this test may try to force them in an invalid position @pytest.mark.generate def test_constrained_beam_search_generate_dict_output(self): for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() # Sample constraints min_id = 3 max_id = model.config.get_text_config(decoder=True).vocab_size force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] constraints = [ PhrasalConstraint(force_tokens), ] beam_kwargs = self._get_constrained_beam_kwargs() output_generate = self._constrained_beam_search_generate( model=model, inputs_dict=inputs_dict, constraints=constraints, beam_kwargs=beam_kwargs, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=False, ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateBeamEncoderDecoderOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateBeamDecoderOnlyOutput) # Retrocompatibility check self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) self._check_generate_outputs( output_generate, model.config, num_return_sequences=beam_kwargs["num_return_sequences"], num_beams=beam_kwargs["num_beams"], ) @pytest.mark.generate def test_contrastive_generate(self): for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support contrastive search generation") # won't fix: FSMT and Reformer have a different cache variable type (and format). if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() # NOTE: contrastive search only works with cache on at the moment. if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True # test old generation output for backwards compatibility model = model_class(config).to(torch_device).eval() output_generate = self._contrastive_generate( model=model, inputs_dict=inputs_dict, use_cache=True, # Enable cache ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + 1) else: self.assertTrue(output_generate.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1]) @pytest.mark.generate def test_contrastive_generate_dict_outputs_use_cache(self): for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support contrastive search generation") # won't fix: FSMT and Reformer have a different cache variable type (and format). if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() # NOTE: contrastive search only works with cache on at the moment. if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() output_generate = self._contrastive_generate( model=model, inputs_dict=inputs_dict, output_scores=True, output_logits=True, output_hidden_states=True, output_attentions=self.has_attentions, return_dict_in_generate=True, use_cache=True, # Enable cache ) if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self._check_generate_outputs(output_generate, model.config, use_cache=True) @pytest.mark.generate def test_contrastive_generate_low_memory(self): # Check that choosing 'low_memory' does not change the model output for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support contrastive search generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]): self.skipTest(reason="Won't fix: old model with different cache format") if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode"]): self.skipTest(reason="TODO: fix me") config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # NOTE: contrastive search only works with cache on at the moment. if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True # test output equality of low versus high memory model = model_class(config).to(torch_device).eval() generate_kwargs = { "top_k": 4, "penalty_alpha": 0.6, "max_new_tokens": self.max_new_tokens, "use_cache": True, "return_dict_in_generate": True, "output_scores": True, } low_output = model.generate(**inputs_dict, **generate_kwargs, low_memory=True) high_output = model.generate(**inputs_dict, **generate_kwargs, low_memory=False) self._check_similar_generate_outputs(low_output, high_output) @parameterized.expand([("random",), ("same",)]) @pytest.mark.generate def test_assisted_decoding_matches_greedy_search(self, assistant_type): # This test ensures that the assisted generation does not introduce output changes over greedy search. # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 for more info. # NOTE: It breaks the pattern in the tests above, for multiple reasons: # - assisted_decoding, contrarily to the other methods, can't be called on its own (e.g. needs to # prepare the assistant encoder outputs in the main generate body); # - assisted_decoding does not support `use_cache = False` # - assisted_decoding does not support `batch_size > 1` for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "bigbirdpegasus", "led", "mega", "moshi", "speech2text", "git", "prophetnet", "seamlessm4t", "clvp", "mllama", # special cache sizes "blip2", # overridden `generate()` "instructblip", "instructblipvideo", ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") # enable cache config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # force eager attention to support output attentions if self.has_attentions: config._attn_implementation = "eager" # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class._from_config(config, attn_implementation="eager").to(torch_device).eval() config = model.config # Sets assisted generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of # the assistant model is correct # c) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see c) "num_beams": 1, "do_sample": False, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": True, } logits_processor_kwargs = self._get_logits_processor_kwargs(config=model.config) output_greedy = model.generate(**generation_kwargs, **inputs_dict, **logits_processor_kwargs) # test with the same assistant model or randomly init one # in the first case all candidate tokens are accepted, in the second none is accepted # case when some are accepted and some not is hard to reproduce, so let's hope this catches most errors :) if assistant_type == "random": assistant_model = model_class(config).to(torch_device).eval() else: assistant_model = model assistant_model.config._attn_implementation = "eager" assistant_model.generation_config.num_assistant_tokens = 2 # see b) assistant_model.generation_config.num_assistant_tokens_schedule = "constant" # see b) generation_kwargs.update({"assistant_model": assistant_model}) output_assisted = model.generate(**generation_kwargs, **inputs_dict, **logits_processor_kwargs) # The two outputs must match and their shape must be as expected self._check_similar_generate_outputs(output_greedy, output_assisted) for output in (output_greedy, output_assisted): self._check_generate_outputs(output, model.config, use_cache=True) @pytest.mark.generate def test_prompt_lookup_decoding_matches_greedy_search(self): # This test ensures that the prompt lookup generation does not introduce output changes over greedy search. # This test is mostly a copy of test_assisted_decoding_matches_greedy_search for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "bigbirdpegasus", "led", "mega", "moshi", "speech2text", "git", "prophetnet", "seamlessm4t", "clvp", "fuyu", "mllama", # special cache sizes "blip2", # overridden `generate()` "instructblip", "instructblipvideo", *VLM_CLASS_NAMES, # shouldn't suggest image tokens ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") # enable cache config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # force eager attention to support output attentions if self.has_attentions: config._attn_implementation = "eager" # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class(config).to(torch_device).eval() # Sets assisted generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) the prompt lookup tries to give the model 2 tokens, to ensure the input preparation of # prompt lookup is correct # c) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see c) "num_beams": 1, "do_sample": False, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": True, } output_greedy = model.generate(**generation_kwargs, **inputs_dict) generation_kwargs.update({"prompt_lookup_num_tokens": 2}) # see b) output_prompt_lookup = model.generate(**generation_kwargs, **inputs_dict) # The two outputs must match and their shape must be as expected self._check_similar_generate_outputs(output_greedy, output_prompt_lookup) for output in (output_greedy, output_prompt_lookup): self._check_generate_outputs(output, model.config, use_cache=True) @pytest.mark.generate def test_dola_decoding_sample(self): # TODO (joao): investigate skips, try to reduce incompatibilities for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support DoLa decoding") if any(model_name in model_class.__name__.lower() for model_name in ["reformer"]): self.skipTest("Skip Reformer as the lm_head input size is 2 * hidden size, adopted from Rev Nets.") if any(model_name in model_class.__name__.lower() for model_name in ["marian", "mbart", "pegasus"]): self.skipTest("DoLa is not supported for models that don't return layerwise hidden states") if any(model_name == model_class.__name__ for model_name in ["LlavaNextVideoForConditionalGeneration"]): self.skipTest(f"DoLa is failing for {model_class.__name__}") # enable cache if the model is not openai-gpt, xlnet, cpm, or xlm config, inputs_dict = self.prepare_config_and_inputs_for_generate() # force eager attention to support output attentions if self.has_attentions: config._attn_implementation = "eager" # Encoder-decoder models are not supported if config.get_text_config(decoder=True).is_encoder_decoder: self.skipTest("DoLa is not supported for encoder-decoder models") config.is_decoder = True model = model_class(config).to(torch_device).eval() if model.get_output_embeddings() is None: self.skipTest("DoLa is not supported for models that don't have output embeddings") logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=True, config=model.config) # Sets dola generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see b) "num_beams": 1, "do_sample": True, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": getattr(config, "use_cache", False), # Some models don't support the cache "dola_layers": "low", } output_dola = model.generate(**generation_kwargs, **logits_processor_kwargs, **inputs_dict) self._check_generate_outputs(output_dola, model.config, use_cache=getattr(config, "use_cache", False)) @pytest.mark.generate def test_assisted_decoding_sample(self): # In this test we don't check assisted vs non-assisted output -- seeded assisted decoding with sample will not # match sample for the same seed, as the forward pass does not return the exact same logits (due to matmul with # different shapes, see https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535). for model_class in self.all_generative_model_classes: if model_class._is_stateful: self.skipTest(reason="Stateful models don't support assisted generation") if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): self.skipTest(reason="Won't fix: old model with different cache format") if any( model_name in model_class.__name__.lower() for model_name in [ "bigbirdpegasus", "led", "mega", "moshi", "speech2text", "git", "prophetnet", "seamlessm4t", "clvp", "mllama", # special cache sizes "blip2", # overridden `generate()` "instructblip", "instructblipvideo", ] ): self.skipTest(reason="May fix in the future: need model-specific fixes") # enable cache config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=1) # force eager attention to support output attentions if self.has_attentions: config._attn_implementation = "eager" # NOTE: assisted generation only works with cache on at the moment. if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") config.is_decoder = True model = model_class._from_config(config, attn_implementation="eager").to(torch_device).eval() config = model.config # Sets assisted generation arguments such that: # a) no EOS is generated, to ensure generation doesn't break early # b) the assistant model always generates two tokens when it is called, to ensure the input preparation of # the assistant model is correct # c) there are at least two forward passes in the main model, to ensure the input preparation of # the main model is correct assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 # see b) assistant_model.generation_config.num_assistant_tokens_schedule = "constant" # see b) generation_kwargs = { "eos_token_id": -1, # see a) "max_new_tokens": 4, # see c) "num_beams": 1, "do_sample": True, "assistant_model": assistant_model, "output_scores": True, "output_logits": True, "output_hidden_states": True, "output_attentions": self.has_attentions, "return_dict_in_generate": True, "use_cache": True, } logits_processor_kwargs = self._get_logits_processor_kwargs(config=model.config) output_assisted = model.generate(**generation_kwargs, **inputs_dict, **logits_processor_kwargs) self._check_generate_outputs(output_assisted, config, use_cache=True) @pytest.mark.generate def test_prompt_lookup_decoding_stops_at_eos(self): # This test ensures that the prompt lookup generation stops at eos token and does not suggest more tokens # (see https://github.com/huggingface/transformers/pull/31301) # The main idea is to have an ngram (unigram in our case) that is repeated twice in the input ids. # First time at the very end, so input ends with the unigrams, and second any arbitrary location. # Also, we need an EOS token which will be injected just after the arbitrary located ngram. # We verify that PLD will not copy and propose candidated that contain an EOS token, even if there are overlapping ngrams # in input ids. Otherwise a proposed EOS along with the trailing (ngrams-1) tokens might be accepted by the target model. # That seems as if the model "generated" and EOS but didn't stop from user's perspective input_ids = torch.randint(1, 50, (1, 10), device=torch_device) # generate inputs in range from 1-50 arbitrary_ngram = 51 # this is the arbitrary ngram, specifically chosen OOV to prevent flaky tests input_ids[:, 3] = arbitrary_ngram # set pre-eos to arbitrary_ngram which is for sure not present in inputs input_ids[:, -1] = arbitrary_ngram # put arbitrary_ngram in the end for the necessary match to happen eos_token_id = torch.tensor([0], device=torch_device) input_ids[:, 4] = eos_token_id # inject eos-token-id in input ids so that it is located after arbitrary_ngram # init cand geenerator with max_matching_ngram_size=1 to match per-token candidate_generator = PromptLookupCandidateGenerator( eos_token_id=eos_token_id, num_output_tokens=4, max_matching_ngram_size=1 ) output_prompt_lookup = candidate_generator.get_candidates(input_ids)[0] # PLD shouldn't propose any new tokens based on eos-match self.assertTrue(output_prompt_lookup.shape[-1] == 10) @pytest.mark.generate def test_left_padding_compatibility(self): # NOTE: left-padding results in small numerical differences. This is expected. # See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535 # First, filter out models that don't support left padding # - The model must have generative capabilities if len(self.all_generative_model_classes) == 0: self.skipTest(reason="No generative architecture available for this model.") # - The model must support padding if not self.has_attentions: self.skipTest(reason="This model doesn't support padding.") # - The model must be a decoder-only architecture (encoder-based architectures use right-padding) decoder_only_classes = [] for model_class in self.all_generative_model_classes: config, _ = self.prepare_config_and_inputs_for_generate() if config.get_text_config(decoder=True).is_encoder_decoder: continue else: decoder_only_classes.append(model_class) if len(decoder_only_classes) == 0: self.skipTest(reason="No decoder-only architecture available for this model.") # - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't # added support for it yet. We skip these models for now. has_encoder_attributes = any( attr_name for attr_name in config.to_dict().keys() if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size" ) if has_encoder_attributes: self.skipTest( reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding." ) # Then, test left-padding def _prepare_model_kwargs(input_ids, attention_mask, signature): model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask} if "position_ids" in signature: position_ids = torch.cumsum(attention_mask, dim=-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) model_kwargs["position_ids"] = position_ids if "cache_position" in signature: cache_position = torch.arange(input_ids.shape[1], device=torch_device) model_kwargs["cache_position"] = cache_position return model_kwargs for model_class in decoder_only_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict.get("attention_mask") if attention_mask is None: attention_mask = torch.ones_like(input_ids) model = model_class(config).to(torch_device).eval() signature = inspect.signature(model.forward).parameters.keys() # no cache as some models require special cache classes to be init outside forward model.generation_config.use_cache = False # Without padding model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature) next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :] # With left-padding (length 32) # can hardcode pad_token to be 0 as we'll do attn masking anyway pad_token_id = ( config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0 ) pad_size = (input_ids.shape[0], 32, *input_ids.shape[2:]) padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id padded_input_ids = torch.cat((padding, input_ids), dim=1) padded_attention_mask = torch.cat( (torch.zeros(pad_size[:2], dtype=input_ids.dtype, device=torch_device), attention_mask), dim=1 ) model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature) next_logits_with_padding = model(**model_kwargs).logits[:, -1, :] # They should result in very similar logits torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5) @pytest.mark.generate def test_past_key_values_format(self, custom_all_cache_shapes=None): """ Test that the KV cache is formatted correctly. Exceptions need to explicitly overwrite this test, or pass the expected cache shapes. Having a standard KV cache format is important for a consistent API (and for advanced generation methods). """ for model_class in self.all_generative_model_classes: config, inputs = self.model_tester.prepare_config_and_inputs_for_common() # 1. If it doesn't support cache, skip the test if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") model = model_class(config).to(torch_device) model = model.eval() if "use_cache" not in inputs: inputs["use_cache"] = True outputs = model(**inputs) if "past_key_values" not in outputs: self.skipTest(reason="This model doesn't return `past_key_values`") # 2. retrieve the KV cache and compute its default expected shapes (if no custom shapes are provided) past_kv = outputs["past_key_values"] is_legacy_cache = not isinstance(past_kv, Cache) text_config = config.get_text_config() num_decoder_layers = ( getattr(text_config, "decoder_layers", None) or getattr(text_config, "num_decoder_layers", None) or text_config.num_hidden_layers ) if custom_all_cache_shapes is None: num_query_attention_heads = getattr( text_config, "decoder_attention_heads", text_config.num_attention_heads ) embed_dim = getattr(text_config, "d_model", text_config.hidden_size) per_head_embed_dim = embed_dim // num_query_attention_heads num_key_value_heads = ( text_config.num_key_value_heads if getattr(text_config, "num_key_value_heads", None) is not None else num_query_attention_heads ) if config.is_encoder_decoder: encoder_num_attention_heads = ( text_config.encoder_attention_heads if hasattr(text_config, "encoder_attention_heads") else text_config.num_attention_heads ) encoder_per_head_embed_dim = embed_dim // encoder_num_attention_heads batch_size, seq_length = inputs["decoder_input_ids"].shape[:2] # The sequence length for the encoder K V depends on the model. Since it is not manipulated in # autoregressive generation, we're keeping the test general and not checking the 3rd dim default_cross_attention_shape = ( batch_size, encoder_num_attention_heads, encoder_per_head_embed_dim, ) default_self_attention_shape = (batch_size, num_key_value_heads, seq_length, per_head_embed_dim) all_cache_shapes = [ [ default_self_attention_shape, default_self_attention_shape, default_cross_attention_shape, default_cross_attention_shape, ] for _ in range(num_decoder_layers) ] else: batch_size, seq_length = inputs["input_ids"].shape[:2] default_self_attention_shape = (batch_size, num_key_value_heads, seq_length, per_head_embed_dim) all_cache_shapes = [ [default_self_attention_shape, default_self_attention_shape] for _ in range(num_decoder_layers) ] else: all_cache_shapes = custom_all_cache_shapes # 3. Check cache shapes # 3.1. Encoder-Decoder checks if config.is_encoder_decoder: num_cache_decoder_layers = ( len(past_kv) if is_legacy_cache else len(past_kv.self_attention_cache.key_cache) ) self.assertEqual(num_cache_decoder_layers, num_decoder_layers) for i in range(num_decoder_layers): if is_legacy_cache: self.assertEqual(len(past_kv[0]), 4) # legacy check: confirm number of elements in tuple # Self attention self_attention_layer_key_cache = ( past_kv[i][0] if is_legacy_cache else past_kv.self_attention_cache.key_cache[i] ) self_attention_layer_value_cache = ( past_kv[i][1] if is_legacy_cache else past_kv.self_attention_cache.value_cache[i] ) self.assertEqual(self_attention_layer_key_cache.shape, all_cache_shapes[i][0]) self.assertEqual(self_attention_layer_value_cache.shape, all_cache_shapes[i][1]) # Cross attention (ignore 3rd dim, see default shape preparation) cross_attention_layer_key_cache = ( past_kv[i][2] if is_legacy_cache else past_kv.cross_attention_cache.key_cache[i] ) cross_attention_layer_value_cache = ( past_kv[i][3] if is_legacy_cache else past_kv.cross_attention_cache.value_cache[i] ) cross_attention_layer_key_cache = cross_attention_layer_key_cache[:, :, 0, :] cross_attention_layer_value_cache = cross_attention_layer_value_cache[:, :, 0, :] self.assertEqual(cross_attention_layer_key_cache.shape, all_cache_shapes[i][2]) self.assertEqual(cross_attention_layer_value_cache.shape, all_cache_shapes[i][3]) # 3.2. Decoder-only checks else: num_cache_decoder_layers = len(past_kv) if is_legacy_cache else len(past_kv.key_cache) self.assertEqual(num_cache_decoder_layers, num_decoder_layers) for i in range(num_decoder_layers): if is_legacy_cache: self.assertEqual(len(past_kv[0]), 2) # legacy check: confirm number of elements in tuple # Self attention self_attention_layer_key_cache = past_kv[i][0] if is_legacy_cache else past_kv.key_cache[i] self_attention_layer_value_cache = past_kv[i][1] if is_legacy_cache else past_kv.value_cache[i] self.assertEqual(self_attention_layer_key_cache.shape, all_cache_shapes[i][0]) self.assertEqual(self_attention_layer_value_cache.shape, all_cache_shapes[i][1]) @pytest.mark.generate @parameterized.expand([("greedy", 1), ("beam search", 2)]) def test_generate_from_inputs_embeds(self, _, num_beams): """Tests that we can generate from `inputs_embeds` instead of `input_ids` in LLMs, VLMs, etc""" # When supported, tests that the decoder model can generate from `inputs_embeds` instead of `input_ids` # if fails, you should probably update the `prepare_inputs_for_generation` function for model_class in self.all_generative_model_classes: config, inputs_dict = self.prepare_config_and_inputs_for_generate() # This test is for decoder-only models (encoder-decoder models have native input embeddings support in the # decoder) if config.get_text_config(decoder=True).is_encoder_decoder: continue config.is_decoder = True # Skip models without explicit support model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys(): continue # There are a few exception patterns in this test: # 1 - Some models can't generate without `input_ids`, when `inputs_embeds` are passed requires_inputs_ids = any(model_name in model_class.__name__.lower() for model_name in ["idefics"]) # 2 - Complex `inputs_embeds` computation, i.e. the correct computation of inputs embeds is more complex # than calling the embedding layer with `input_ids`. Subcases of this exception: # 2.A - Ignore `scale_embedding`, if the model supports it (it is controlled by a model-dependent flag) if hasattr(config, "scale_embedding"): config.scale_embedding = False # 2.B - Some VLMs assume `inputs_embeds` and `pixel_values` are mutually exclusive AND fall in the # exception above (complex `inputs_embeds` computation). Popping `pixel_values` allow us to run the # checks without adding test complexity. Ditto for `pixel_values_videos` and `pixel_values_images` pixel_values_is_mutually_exclusive = any( model_name in model_class.__name__.lower() for model_name in VLM_CLASS_NAMES ) if pixel_values_is_mutually_exclusive: inputs_dict.pop("pixel_values", None) inputs_dict.pop("pixel_values_videos", None) inputs_dict.pop("pixel_values_images", None) # HACK - in the case of granite speech, input_features and inputs_embeds are mutually exclusive; # this is similar to VLMs and should likely be standardized for similar audio models in the future, # then made generic here. if "granitespeech" in model_class.__name__.lower(): inputs_dict.pop("input_features", None) # 2.C - No easy fix, let's skip the check that compares the outputs from `input_ids` and `inputs_embeds` has_complex_embeds_computation = any( model_name in model_class.__name__.lower() for model_name in ["moshi"] ) # 3 - `inputs_dict` doesn't contain `attention_mask`. When `attention_mask` is not passed to generate, # we infer it from `input_ids`. The last test case will fail if there is a pad token in the original input. missing_attention_mask = "attention_mask" not in inputs_dict # Traditional way of generating text input_ids = inputs_dict.pop("input_ids") generation_kwargs = { "return_dict_in_generate": True, "output_scores": True, "num_beams": num_beams, "do_sample": False, "max_new_tokens": 5, "min_new_tokens": 5, # generate exactly 5 tokens } outputs_from_ids = model.generate(input_ids, **generation_kwargs, **inputs_dict) self.assertEqual(outputs_from_ids.sequences.shape[:2], (input_ids.shape[0], input_ids.shape[1] + 5)) # Same thing, but from input embeddings (`input_ids` is passed so the prompt is present in the output). # The output of the two calls should be the same. inputs_embeds = model.get_input_embeddings()(input_ids) outputs_from_embeds = model.generate( input_ids, inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict ) if not has_complex_embeds_computation: self._check_similar_generate_outputs(outputs_from_ids, outputs_from_embeds) # If we pass different inputs_embeds, we should get different outputs (the output text may be the # same, but the logits will almost surely be different) random_embeds = torch.rand_like(inputs_embeds) outputs_from_rand_embeds = model.generate( input_ids, inputs_embeds=random_embeds, **generation_kwargs, **inputs_dict ) for i in range(len(outputs_from_rand_embeds.scores)): self.assertFalse(torch.allclose(outputs_from_embeds.scores[i], outputs_from_rand_embeds.scores[i])) # input_ids is not a required input on most models -- if we don't pass it, the newly generated tokens will # be the same if not (requires_inputs_ids or missing_attention_mask): outputs_from_embeds_wo_ids = model.generate( inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict ) outputs_from_embeds.sequences = outputs_from_embeds.sequences[:, inputs_embeds.shape[1] :] self._check_similar_generate_outputs(outputs_from_embeds_wo_ids, outputs_from_embeds) @pytest.mark.generate def test_generate_from_inputs_embeds_with_static_cache(self): """ Test that StaticCache can generate from inputs_embeds and calculates max_cache_length correctly in `generate()`. We force the model to not stop generation until max-length is reached to verify that the cache length is indeed set correctly and we don't run out of index when slicing the cache. """ for model_class in self.all_generative_model_classes: if not model_class._supports_static_cache: self.skipTest(reason="This model does not support the static cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() if config.get_text_config(decoder=True).is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder and has Encoder-Decoder Cache") model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys(): self.skipTest(reason="This model does not support `inputs_embeds` in generation") # Some VLMs assume `inputs_embeds` and `pixel_values` are mutually exclusive AND fall in the # exception above (complex `inputs_embeds` computation). Popping `pixel_values` allow us to run the # checks without adding test complexity. Ditto for `pixel_values_videos` and `pixel_values_images` pixel_values_is_mutually_exclusive = any( model_name in model_class.__name__.lower() for model_name in VLM_CLASS_NAMES ) if pixel_values_is_mutually_exclusive: inputs_dict.pop("pixel_values", None) inputs_dict.pop("pixel_values_videos", None) inputs_dict.pop("pixel_values_images", None) input_ids = inputs_dict.pop("input_ids") model.config.use_cache = True model.config.is_decoder = True batch_size = input_ids.shape[0] max_new_tokens = 10 # here we force to not stop at eos and go until max-length model.generation_config.eos_token_id = model.config.get_text_config().eos_token_id = -1 generation_kwargs = { "max_new_tokens": max_new_tokens, "cache_implementation": "static", "return_dict_in_generate": True, # Required to return `past_key_values` } text_config = model.config.get_text_config() head_dim = ( getattr(text_config, "head_dim", None) or text_config.hidden_size // text_config.num_attention_heads ) num_key_value_heads = ( text_config.num_attention_heads if getattr(text_config, "num_key_value_heads", None) is None else text_config.num_key_value_heads ) num_hidden_layers = text_config.num_hidden_layers inputs_embeds = model.get_input_embeddings()(input_ids) outputs = model.generate(inputs_embeds=inputs_embeds, **generation_kwargs, **inputs_dict) # we should get `max_length - 1` in shape, not `max_length - embeds_length`. # -1 because the last generated token isn't yet in the cache. max_length = max_new_tokens + inputs_embeds.shape[1] - 1 cache_shape = [batch_size, num_key_value_heads, max_length, head_dim] self.assertIsInstance(outputs.past_key_values, StaticCache) self.assertEqual(len(outputs.past_key_values.key_cache), num_hidden_layers) self.assertListEqual(list(outputs.past_key_values.key_cache[0].shape), cache_shape) @pytest.mark.generate def test_generate_continue_from_past_key_values(self): # Tests that we can continue generating from past key values, returned from a previous `generate` call for model_class in self.all_generative_model_classes: if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt", "mllama"]): self.skipTest(reason="Won't fix: old model with unique inputs/caches/other") if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]): self.skipTest(reason="TODO: needs modeling or test input preparation fixes for compatibility") config, inputs = self.model_tester.prepare_config_and_inputs_for_common() if not hasattr(config.get_text_config(), "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") # Let's make it always: # 1. use cache (for obvious reasons) # 2. generate to max length (which can be achieved by setting the eos token to an invalid value), which # would make the test flaky (e.g. EOS is generated on iteration 1 on both generations, but the # continuation would force it to generate beyond an EOS token) # 3. ignore `token_type_ids` for simplicity # 4. ignore `forced_eos_token_id`, which requires further manipulation of the continuation inputs and is # active by default on some models # 5. ignore `encoder_no_repeat_ngram_size`, which is set by default in some encoder-decoder models. When # we use their decoder as a stand-alone model, `encoder_no_repeat_ngram_size` actually prevents # repetition exclusively from the prompt. This test relies on comparing one call vs 2 calls # with cache, what is considered a prompt is different in the two cases. if "token_type_ids" in inputs: del inputs["token_type_ids"] model = model_class(config).to(torch_device) model.eval() # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format) outputs = model(**inputs) if "past_key_values" not in outputs: self.skipTest(reason="This model doesn't return `past_key_values`") generate_kwargs = { "pad_token_id": -1, "eos_token_id": -1, "forced_eos_token_id": None, "encoder_no_repeat_ngram_size": 0, "use_cache": True, "do_sample": False, "return_dict_in_generate": True, "output_scores": True, } # Traditional way of generating text, with `return_dict_in_generate` to return the past key values outputs = model.generate(**inputs, **generate_kwargs, max_new_tokens=4) # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens). Note that the # inputs may need to be tweaked across `generate` calls (like the attention mask). outputs_cached = model.generate(**inputs, **generate_kwargs, max_new_tokens=3) # Continue from the tokens generated above, preparing the inputs accordingly inputs["past_key_values"] = outputs_cached.past_key_values new_attention_len = outputs_cached.sequences.shape[-1] if config.is_encoder_decoder: inputs["decoder_input_ids"] = outputs_cached.sequences if "decoder_attention_mask" in inputs: inputs["decoder_attention_mask"] = torch.nn.functional.pad( inputs["decoder_attention_mask"], (0, new_attention_len - inputs["decoder_attention_mask"].shape[1]), mode="constant", value=1, ) else: inputs["input_ids"] = outputs_cached.sequences if "attention_mask" in inputs: inputs["attention_mask"] = torch.nn.functional.pad( inputs["attention_mask"], (0, new_attention_len - inputs["attention_mask"].shape[1]), mode="constant", value=1, ) first_caches_scores = outputs_cached.scores outputs_cached = model.generate(**inputs, **generate_kwargs, max_new_tokens=1) full_cached_scores = first_caches_scores + outputs_cached.scores outputs_cached.scores = full_cached_scores # The two sets of generated text and past kv should be equal to each other self._check_similar_generate_outputs(outputs, outputs_cached) for layer_idx in range(len(outputs_cached.past_key_values)): for kv_idx in range(len(outputs_cached.past_key_values[layer_idx])): self.assertTrue( torch.allclose( outputs.past_key_values[layer_idx][kv_idx], outputs_cached.past_key_values[layer_idx][kv_idx], ) ) @pytest.mark.generate def test_generate_continue_from_inputs_embeds(self): """Tests that we can continue generation from `inputs_embeds` and past key values returned from a previous `generate` call.""" for model_class in self.all_generative_model_classes: if any(model_name in model_class.__name__.lower() for model_name in ["imagegpt"]): self.skipTest(reason="Won't fix: old model with unique inputs/caches/other") if any(model_name in model_class.__name__.lower() for model_name in ["umt5"]): self.skipTest(reason="TODO: needs modeling or test input preparation fixes for compatibility") config, inputs_dict = self.prepare_config_and_inputs_for_generate() if "token_type_ids" in inputs_dict: del inputs_dict["token_type_ids"] if config.get_text_config(decoder=True).is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder") # TODO (joao, raushan): the correct line below is `if not hasattr(config.get_text_config(), "use_cache")`, # but it breaks a few models. Fix and then apply `_check_similar_generate_outputs` pattern if not hasattr(config, "use_cache"): self.skipTest(reason=f"{model_class.__name__} doesn't support caching") model = model_class(config).to(torch_device).eval() if "inputs_embeds" not in inspect.signature(model.prepare_inputs_for_generation).parameters.keys(): self.skipTest(reason="This model does not support `inputs_embeds` in generation") # If "past_key_values" is not returned, skip the test (e.g. RWKV uses a different cache name and format) outputs = model(**inputs_dict) if "past_key_values" not in outputs: self.skipTest(reason="This model doesn't return `past_key_values`") pixel_values_is_mutually_exclusive = any( model_name in model_class.__name__.lower() for model_name in VLM_CLASS_NAMES ) if pixel_values_is_mutually_exclusive: inputs_dict.pop("pixel_values", None) inputs_dict.pop("pixel_values_videos", None) inputs_dict.pop("pixel_values_images", None) input_ids = inputs_dict.pop("input_ids") model.generation_config.pad_token_id = model.generation_config.eos_token_id = -1 model.generation_config.forced_eos_token_id = None model.config.is_decoder = True model.generation_config.use_cache = True generation_kwargs = { "return_dict_in_generate": True, "do_sample": False, } # Traditional way of generating text, with `return_dict_in_generate` to return the past key values. input_embeds = model.get_input_embeddings()(input_ids) outputs = model.generate(inputs_embeds=input_embeds, max_new_tokens=4, **generation_kwargs) # Let's generate again, but passing the past key values in between (3 + 1 = 4 tokens) initial_output = model.generate(inputs_embeds=input_embeds, max_new_tokens=3, **generation_kwargs) continued_embeds = torch.cat([input_embeds, model.get_input_embeddings()(initial_output.sequences)], dim=1) cached_output = model.generate( inputs_embeds=continued_embeds, max_new_tokens=1, past_key_values=initial_output.past_key_values, **generation_kwargs, ) # Combine the (3 + 1) generated tokens and verify it matches with full generation. combined_output_sequences = torch.concat([initial_output.sequences, cached_output.sequences], axis=1) self.assertListEqual(outputs.sequences.tolist(), combined_output_sequences.tolist()) # The two sets of past kv should be equal to each other for layer_idx in range(len(cached_output.past_key_values)): for kv_idx in range(len(cached_output.past_key_values[layer_idx])): self.assertTrue( torch.allclose( outputs.past_key_values[layer_idx][kv_idx], cached_output.past_key_values[layer_idx][kv_idx], ) ) @pytest.mark.generate def test_generate_with_static_cache(self): """ Tests that generating with static cache give almost same results as with dynamic cache, and the output cache has the expected shapes """ set_model_tester_for_less_flaky_test(self) for model_class in self.all_generative_model_classes: if not model_class._supports_static_cache: self.skipTest(reason="This model does not support the static cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() set_config_for_less_flaky_test(config) main_input = inputs_dict[model_class.main_input_name] if config.get_text_config(decoder=True).is_encoder_decoder: self.skipTest(reason="This model is encoder-decoder and has Encoder-Decoder Cache") config.is_decoder = True batch_size = main_input.shape[0] seq_length = self.model_tester.seq_length max_new_tokens = 20 for dtype in (torch.float32, torch.float16): model = model_class(config).to(torch_device).to(dtype).eval() inputs_dict = { k: v.to(dtype) if isinstance(v, torch.Tensor) and torch.is_floating_point(v) else v for k, v in inputs_dict.items() } set_model_for_less_flaky_test(model) generation_kwargs = { "max_new_tokens": max_new_tokens, "return_dict_in_generate": True, # Required to return `past_key_values` "output_scores": True, "use_cache": True, } static_cache_generation = model.generate( **generation_kwargs, **inputs_dict, cache_implementation="static" ) # Check 1: The cache shapes must match the expected shapes max_cache_len = seq_length + max_new_tokens - 1 # cache len = gen len - 1, the last token has no cache text_config = config.text_config if hasattr(config, "text_config") else config head_dim = ( getattr(text_config, "head_dim", None) or text_config.hidden_size // text_config.num_attention_heads ) num_key_value_heads = ( text_config.num_attention_heads if getattr(text_config, "num_key_value_heads", None) is None else text_config.num_key_value_heads ) num_hidden_layers = text_config.num_hidden_layers cache_shape = (batch_size, num_key_value_heads, max_cache_len, head_dim) self.assertTrue(isinstance(static_cache_generation.past_key_values, StaticCache)) self.assertTrue(len(static_cache_generation.past_key_values.key_cache) == num_hidden_layers) self.assertTrue(static_cache_generation.past_key_values.key_cache[0].shape == cache_shape) # Check 2: The outputs must be similar to the case with dynamic cache dynamic_cache_generation = model.generate(**generation_kwargs, **inputs_dict) self._check_similar_generate_outputs(dynamic_cache_generation, static_cache_generation) @require_optimum_quanto @pytest.mark.generate def test_generate_with_quant_cache(self): for model_class in self.all_generative_model_classes: if not model_class._supports_quantized_cache: self.skipTest(reason="This model does not support the quantized cache format") config, inputs_dict = self.prepare_config_and_inputs_for_generate() config.is_decoder = True model = model_class(config).to(torch_device).eval() generation_kwargs = { "max_new_tokens": 5, "cache_implementation": "quantized", # careful with group size, should be divisor of model's hidden size "cache_config": {"backend": "quanto", "nbits": 2, "q_group_size": 8, "residual_length": 128}, "return_dict_in_generate": True, # Required to return `past_key_values` "use_cache": True, } results = model.generate(**generation_kwargs, **inputs_dict) self.assertTrue(isinstance(results.past_key_values, QuantoQuantizedCache)) # passing past key values of different type should raise Error with self.assertRaises(ValueError): model.generate(past_key_valyes=DynamicCache(), **generation_kwargs, **inputs_dict) # setting incorrect cache_config args should raise an Error, i.e. nbits=60 does not make sense generation_kwargs["cache_config"] = {"nbits": 60, "q_group_size": 8, "residual_length": 128} with self.assertRaises(ValueError): model.generate(**generation_kwargs, **inputs_dict) @pytest.mark.generate @require_torch_greater_or_equal("2.6") # Uses torch.compiler.set_stance def test_generate_compile_model_forward(self): """ Tests that `.generate` is compatible with torch.compile, keeping the same results. Also confirms that `.forward` called from `.generate` sees no graph breaks or recompilations when compiled. ⚠️ Runs two sequential generations to ensure the cache doesn't get stuck after the first compiled run! ⚠️ """ for model_class in self.all_generative_model_classes: # 1. Test exclusion criteria if not model_class._supports_static_cache: self.skipTest("This model doesn't support static cache (= no expectations of compilation support)") # 2. Prepares two sets of inputs config, inputs_dict = self.prepare_config_and_inputs_for_generate(batch_size=4) model = model_class(config).to(torch_device) model.eval() # otherwise `self.training` is `True` -- this flag is used at attn mask creation time # Some composite models have a custom generate and will call an inner model's generate -> that inner model # is the one that gets compiled. # (Note for the future: if BLIP starts causing problems, let's stop testing it) if "blip" in model.__class__.__name__.lower(): model_to_be_compiled = model.language_model else: model_to_be_compiled = model # creates two sets of *different* inputs with the same shape main_input = inputs_dict[model.main_input_name].to(torch_device) half_batch_size = main_input.shape[0] // 2 input_1 = {} input_2 = {} for key, value in inputs_dict.items(): if isinstance(value, torch.Tensor): input_1[key] = value[:half_batch_size, :].to(torch_device) input_2[key] = value[half_batch_size : half_batch_size * 2, :].to(torch_device) else: input_1[key] = value input_2[key] = value model_input_sets = [input_1, input_2] self.assertTrue( model_input_sets[0][model.main_input_name].shape == model_input_sets[1][model.main_input_name].shape ) # 3. compilation-specific setup and generation parameterization torch.compiler.reset() # prevent cached compilation from being used in the test has_defined_cache_implementation = model.generation_config.cache_implementation is not None compile_config = CompileConfig(dynamic=False) # Error out on dynamic shapes compile_config._compile_all_devices = True # force compilation (e.g. fast CI, CPU) generation_kwargs = { "use_cache": True, "do_sample": False, "max_new_tokens": 5, "return_dict_in_generate": True, "output_scores": True, "compile_config": compile_config, } # 4. get eager + dynamic cache results for future comparison dynamic_outputs = [] # Ignores all `torch.compile` usage, useful to test models that that have non-default compilable caches # (who would have used compilation in this section) with torch.compiler.set_stance("force_eager"): for model_inputs in model_input_sets: gen_out = model.generate(**model_inputs, **generation_kwargs) dynamic_outputs.append(gen_out) # sanity checks for the default cache implementation if not has_defined_cache_implementation: decoder_cache = ( gen_out.past_key_values.self_attention_cache if config.get_text_config(decoder=True).is_encoder_decoder else gen_out.past_key_values ) self.assertTrue(isinstance(decoder_cache, DynamicCache)) self.assertFalse(decoder_cache.is_compileable) # our auto compile should NOT have been called self.assertFalse(hasattr(model_to_be_compiled, "_compiled_call")) # 5. get compiled results -- relies on the automatic compilation triggered by specific compilable caches if not has_defined_cache_implementation: generation_kwargs["cache_implementation"] = "static" compiled_outputs = [] # Uses a context manager to catch recompilation logs. If there is any recompilation, this test fails. # Try/Finally is used to ensure that the log options are reset even if an error is raised. try: torch._logging.set_logs(recompiles_verbose=True) logger = logging.get_logger("torch._dynamo.guards") with CaptureLogger(logger) as cl: for model_inputs in model_input_sets: # with torch.compiler.set_stance("fail_on_recompile"): gen_out = model.generate(**model_inputs, **generation_kwargs) compiled_outputs.append(gen_out) # sanity checks decoder_cache = ( gen_out.past_key_values.self_attention_cache if config.get_text_config(decoder=True).is_encoder_decoder else gen_out.past_key_values ) self.assertFalse(isinstance(decoder_cache, DynamicCache)) self.assertTrue(decoder_cache.is_compileable) # our auto compile should have been called self.assertTrue(hasattr(model_to_be_compiled, "_compiled_call")) finally: torch._logging.set_logs() if "Recompiling" in cl.out or ("guard" in cl.out and "failure" in cl.out): raise RuntimeError( f"`torch.compile` recompiled part of the forward pass in {model.__class__.__name__}. " "See the test logs for more details." ) for dynamic_result, compiled_result in zip(dynamic_outputs, compiled_outputs): self._check_similar_generate_outputs(dynamic_result, compiled_result) @pytest.mark.generate def test_generate_compilation_all_outputs(self): """ Tests that all optional outputs are behaving as expected when compilation is triggered. In essence, it's the same as `test_greedy_generate_dict_outputs`, but with automatic compilation triggered. """ for model_class in self.all_generative_model_classes: if not model_class._supports_static_cache: self.skipTest("This model doesn't support static cache (= no expectations of compilation support)") config, inputs_dict = self.prepare_config_and_inputs_for_generate() if self.has_attentions: config._attn_implementation = "eager" # can't output attentions otherwise model = model_class(config).to(torch_device).eval() # compilation-specific setup torch.compiler.reset() # prevent cached compilation from being used in the test has_defined_cache_implementation = model.generation_config.cache_implementation is not None # BLIP is the only exception with custom generate which call `self.lm.generate()` # We should avoid such calls in all subsequent multimodal models and try to make `generate()` # compatible with multimodality compile_config = CompileConfig() compile_config._compile_all_devices = True if "blip" in model.__class__.__name__.lower(): model.language_model.generation_config.compile_config = compile_config if not has_defined_cache_implementation: model.language_model.generation_config.cache_implementation = "static" else: # force compilation (e.g. fast CI, CPU) model.generation_config.compile_config = compile_config if not has_defined_cache_implementation: model.generation_config.cache_implementation = "static" logits_processor_kwargs = self._get_logits_processor_kwargs(do_sample=False, config=model.config) output_generate = model.generate( do_sample=False, num_beams=1, max_new_tokens=self.max_new_tokens, min_new_tokens=self.max_new_tokens, output_attentions=True, output_hidden_states=True, output_scores=True, output_logits=True, return_dict_in_generate=True, use_cache=True, **logits_processor_kwargs, **inputs_dict, ) if "blip" in model.__class__.__name__.lower(): self.assertTrue(hasattr(model.language_model, "_compiled_call")) else: self.assertTrue(hasattr(model, "_compiled_call")) # our auto compile should have been called if model.config.get_text_config(decoder=True).is_encoder_decoder: self.assertTrue(output_generate.sequences.shape[1] == self.max_new_tokens + 1) self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput) else: self.assertTrue( output_generate.sequences.shape[1] == self.max_new_tokens + inputs_dict["input_ids"].shape[1] ) self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput) self._check_generate_outputs(output_generate, model.config, use_cache=True) @pytest.mark.generate def test_generate_methods_with_logits_to_keep(self): for model_class in self.all_generative_model_classes: if "logits_to_keep" not in set(inspect.signature(model_class.forward).parameters.keys()): self.skipTest(reason="This model does not support `logits_to_keep` argument.") config, inputs_dict = self.prepare_config_and_inputs_for_generate() config.use_cache = True config.is_decoder = True model = model_class(config).to(torch_device).eval() # All generation methods (except assisted decoding) rely on always extracting the last token logits of the # full logits matrix, so testing out only greedy search and assisted decoding is enough (if it works, # other methods will work as well) generation_kwargs = { "max_new_tokens": 10, "do_sample": False, } # Setting logits_to_keep at 0 keeps all logits (old behavior) with_all_logits = model.generate(**generation_kwargs, **inputs_dict, logits_to_keep=0) # By default, logits_to_keep is automatically set to 1 if not provided (new behavior) without_all_logits = model.generate(**inputs_dict, **generation_kwargs) self.assertEqual(with_all_logits.tolist(), without_all_logits.tolist()) @pytest.mark.generate def test_inherits_generation_mixin(self): """ Tests that the model class directly inherits `GenerationMixin`, as opposed to relying on `PreTrainedModel` to inherit it. """ for model_class in self.all_generative_model_classes: self.assertTrue("GenerationMixin" in str(model_class.__bases__)) def _test_attention_implementation(self, attn_implementation): """ Compares the output of generate with the eager attention implementation against other implementations. NOTE: despite the test logic being the same, different implementations actually need different decorators, hence this separate function. """ max_new_tokens = 30 support_flag = { "sdpa": "_supports_sdpa", "flash_attention_2": "_supports_flash_attn_2", "flash_attention_3": "_supports_flash_attn_3", } for model_class in self.all_generative_model_classes: if not getattr(model_class, support_flag[attn_implementation]): self.skipTest(f"{model_class.__name__} does not support `attn_implementation={attn_implementation}`") config, original_inputs_dict = self.prepare_config_and_inputs_for_generate() inputs_dict = {} for input_name, input_data in original_inputs_dict.items(): if isinstance(input_data, torch.Tensor) and input_data.dtype in [torch.float32, torch.bfloat16]: inputs_dict[input_name] = input_data.to(torch.float16) else: inputs_dict[input_name] = input_data main_input = inputs_dict[model_class.main_input_name] # FA2 doesn't accept masking in the middle of the sequence for now. We usually generate right-padded # attention masks at test time and, with generate, the mask will be appended with 1s on the right, # resulting in a mask with holes (not supported properly by FA2). if attn_implementation == "flash_attention_2": for input_name in ("attention_mask", "decoder_attention_mask", "encoder_attention_mask"): if input_name in inputs_dict: inputs_dict[input_name] = torch.ones_like(inputs_dict[input_name]) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + main_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) del model gc.collect() generate_kwargs = { "max_new_tokens": max_new_tokens, "do_sample": False, "return_dict_in_generate": True, "output_scores": True, "use_cache": True, } model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="eager", ).to(torch_device) res_eager = model_eager.generate(**inputs_dict, **generate_kwargs) del model_eager gc.collect() model_attn = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation=attn_implementation, ).to(torch_device) res_attn = model_attn.generate(**inputs_dict, **generate_kwargs) del model_attn gc.collect() self._check_similar_generate_outputs(res_eager, res_attn, atol=1e-3, rtol=1e-3) @pytest.mark.generate @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): """Tests that generate has equivalent outputs with SDPA and eager attention implementations.""" self._test_attention_implementation("sdpa") @pytest.mark.flash_attn_test @require_flash_attn @require_torch_gpu @slow def test_eager_matches_fa2_generate(self): """Tests that generate has equivalent outputs with FA2 and eager attention implementations.""" self._test_attention_implementation("flash_attention_2") @pytest.mark.flash_attn_3_test @require_flash_attn_3 @require_torch_gpu @slow def test_eager_matches_fa3_generate(self): """Tests that generate has equivalent outputs with FA3 and eager attention implementations.""" self._test_attention_implementation("flash_attention_3") def _check_generate_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1): input_batch_size = int(output.sequences.shape[0] / num_return_sequences) internal_batch_size = ( input_batch_size * num_beams if num_beams > 1 else input_batch_size * num_return_sequences ) prompt_length = getattr(self.model_tester, "seq_length", None) prompt_length = getattr(self.model_tester, "encoder_seq_length", prompt_length) prompt_length = getattr(self.model_tester, "text_seq_length", prompt_length) config = config.text_config if hasattr(config, "text_config") else config generated_length = ( output.sequences.shape[1] - 1 if config.is_encoder_decoder else output.sequences.shape[1] - prompt_length ) decoder_past_key_values = getattr(output, "past_key_values", None) if config.is_encoder_decoder and isinstance(decoder_past_key_values, EncoderDecoderCache): decoder_past_key_values = decoder_past_key_values.self_attention_cache # in some models we subsample the sequence length in inner layers if hasattr(self.model_tester, "get_subsampled_output_lengths"): prompt_length = self.model_tester.get_subsampled_output_lengths(prompt_length) # scores self._check_scores( batch_size=internal_batch_size, scores=output.scores, generated_length=generated_length, config=config ) # unprocessed logits self._check_logits(batch_size=internal_batch_size, logits=output.logits, config=config) # Attentions if self.has_attentions: if config.is_encoder_decoder: # encoder self._check_encoder_attention_for_generate( attentions=output.encoder_attentions, batch_size=input_batch_size, config=config, prompt_length=prompt_length, ) # decoder self._check_attentions_for_generate( batch_size=internal_batch_size, attentions=output.decoder_attentions, prompt_length=1, # the BOS token output_length=output.sequences.shape[1], config=config, decoder_past_key_values=decoder_past_key_values, ) else: self._check_attentions_for_generate( batch_size=internal_batch_size, attentions=output.attentions, prompt_length=prompt_length, output_length=output.sequences.shape[1], config=config, decoder_past_key_values=decoder_past_key_values, ) # Hidden States if config.is_encoder_decoder: # encoder self._check_encoder_hidden_states_for_generate( hidden_states=output.encoder_hidden_states, batch_size=input_batch_size, config=config, prompt_length=prompt_length, ) # decoder self._check_hidden_states_for_generate( batch_size=internal_batch_size, hidden_states=output.decoder_hidden_states, prompt_length=1, # the BOS token output_length=output.sequences.shape[1], config=config, use_cache=use_cache, ) else: self._check_hidden_states_for_generate( batch_size=internal_batch_size, hidden_states=output.hidden_states, prompt_length=prompt_length, output_length=output.sequences.shape[1], config=config, use_cache=use_cache, ) # Past Key Value States -- a few notes here: # 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1" # 2. We ignore models that have unique cache structures (e.g. mamba) or are in need of refatoring to match the # standard cache format (e.g.gptbigcode ) models_without_standard_cache = ( "bamba", "ctrl", "fsmt", "granitemoehybrid", "gptbigcode", "mega", "reformer", "jamba", "mamba", "xlnet", "zamba", "zamba2", ) has_standard_cache = not any( model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache ) if has_standard_cache: if use_cache: cache_length = output.sequences.shape[1] - 1 self._check_past_key_values_for_generate( batch_size=internal_batch_size, decoder_past_key_values=decoder_past_key_values, cache_length=cache_length, config=config, ) elif use_cache is False: self.assertTrue(decoder_past_key_values is None) def _check_scores(self, batch_size, scores, generated_length, config): vocab_size = config.get_text_config(decoder=True).vocab_size expected_shape = (batch_size, vocab_size) self.assertIsInstance(scores, tuple) self.assertEqual(len(scores), generated_length) self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores)) def _check_logits(self, batch_size, logits, config): vocab_size = config.get_text_config(decoder=True).vocab_size self.assertIsInstance(logits, tuple) self.assertListEqual([iter_logits.shape[0] for iter_logits in logits], [batch_size] * len(logits)) # vocabulary difference equal to one (imagegptmodel?) or zero (all other models) vocab_diff = vocab_size - logits[0].shape[-1] self.assertTrue(vocab_diff in [0, 1]) self.assertListEqual([vocab_size - score.shape[-1] for score in logits], [vocab_diff] * len(logits)) def _check_attentions_for_generate( self, batch_size, attentions, prompt_length, output_length, config, decoder_past_key_values ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (output_length - prompt_length)) use_cache = decoder_past_key_values is not None has_static_cache = isinstance(decoder_past_key_values, (StaticCache, HybridCache)) # When `output_attentions=True`, each iteration of generate appends the attentions corresponding to the new # token(s) # NOTE: `HybridCache` may have different lengths on different layers, if this test starts failing add more # elaborate checks for generated_length, iter_attentions in enumerate(attentions): # regardless of using cache, the first forward pass will have the full prompt as input if use_cache and generated_length > 0: model_input_length = 1 else: model_input_length = prompt_length + generated_length query_length = ( prompt_length + generated_length if not has_static_cache else decoder_past_key_values.get_max_cache_shape() ) expected_shape = ( batch_size, config.num_attention_heads, model_input_length, query_length, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_encoder_attention_for_generate(self, attentions, batch_size, config, prompt_length): encoder_expected_shape = (batch_size, config.num_attention_heads, prompt_length, prompt_length) self.assertIsInstance(attentions, tuple) self.assertListEqual( [layer_attentions.shape for layer_attentions in attentions], [encoder_expected_shape] * len(attentions), ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, prompt_length, output_length, config, use_cache=False ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (output_length - prompt_length)) # When `output_hidden_states=True`, each iteration of generate appends the hidden states corresponding to the # new token(s) # NOTE: `HybridCache` may have different lengths on different layers, if this test starts failing add more # elaborate checks for generated_length, iter_hidden_states in enumerate(hidden_states): # regardless of using cache, the first forward pass will have the full prompt as input if use_cache and generated_length > 0: model_input_length = 1 else: model_input_length = prompt_length + generated_length expected_shape = (batch_size, model_input_length, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, prompt_length): encoder_expected_shape = (batch_size, prompt_length, config.hidden_size) self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in hidden_states], [encoder_expected_shape] * len(hidden_states), ) def _check_past_key_values_for_generate(self, batch_size, decoder_past_key_values, cache_length, config): self.assertIsInstance(decoder_past_key_values, (tuple, Cache)) # (batch, head, seq_length, head_features) expected_shape = ( batch_size, config.num_key_value_heads if hasattr(config, "num_key_value_heads") else config.num_attention_heads, cache_length, config.hidden_size // config.num_attention_heads, ) if isinstance(decoder_past_key_values, Cache): self.assertListEqual( [key_tensor.shape for key_tensor in decoder_past_key_values.key_cache], [expected_shape] * len(decoder_past_key_values.key_cache), ) self.assertListEqual( [value_tensor.shape for value_tensor in decoder_past_key_values.value_cache], [expected_shape] * len(decoder_past_key_values.value_cache), ) # Legacy cache format checks. This branch should be removed when all models use `Cache` by default else: self.assertListEqual( [isinstance(iter_past_key_values, tuple) for iter_past_key_values in decoder_past_key_values], [True] * len(decoder_past_key_values), ) # check shape key, value self.assertListEqual( [layer_past_key_values[0].shape for layer_past_key_values in decoder_past_key_values], [expected_shape] * len(decoder_past_key_values), ) self.assertListEqual( [layer_past_key_values[1].shape for layer_past_key_values in decoder_past_key_values], [expected_shape] * len(decoder_past_key_values), ) def _check_sequence_inside_sequence(self, tensor_1, tensor_2): # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1. # set to same device. we don't care what device. if not isinstance(tensor_1, list): tensor_1 = tensor_1.tolist() if not isinstance(tensor_2, list): tensor_2 = tensor_2.tolist() in_order = len(tensor_1) <= len(tensor_2) longer = tensor_2 if in_order else tensor_1 shorter = tensor_1 if in_order else tensor_2 flag = False chunk_size = len(shorter) for chunk_idx in range(len(longer) - chunk_size + 1): subseq = longer[chunk_idx : chunk_idx + chunk_size] if subseq == shorter: flag = True break self.assertTrue(flag) @require_torch class UtilsFunctionsTest(unittest.TestCase): def test_speculative_sampling(self): # assume vocab size 10, input length 5 + 3 generated candidates candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]]) # input tokens candidate_logits = torch.tensor( [ [ [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 1 [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 4 [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0], # generated 5 ] ] ) candidate_length = 3 inf = float("inf") new_logits = torch.tensor( [ [ [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # accepts 1 [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # accepts 4 [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 10.0, -inf], # rejects 5, accepts 8 [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # N/A ] ] ) last_assistant_token_is_eos = False validated_tokens, n_matches = _speculative_sampling( candidate_input_ids, candidate_logits, candidate_length, new_logits, last_assistant_token_is_eos, ) self.assertTrue(n_matches.item() == 2) self.assertTrue(validated_tokens.tolist()[0] == [1, 4, 8]) def test_speculative_sampling_target_distribution(self): """ Asserts that the target distribution is preserved. Should help with catching issues like #32867. """ # assume vocab size 10, input length 5 + 3 generated candidates candidate_input_ids = torch.tensor([[8, 0, 3, 9, 8, 1, 4, 5]]) # input tokens candidate_logits = torch.tensor( [ [ [-10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 1 [-10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0, -10.0], # generated 4 [-10.0, -10.0, -10.0, -10.0, -10.0, 10.0, -10.0, -10.0, -10.0, -10.0], # generated 5 ] ] ) candidate_length = 3 inf = float("inf") new_logits = torch.tensor( [ [ # accepts 1: [-inf, 10.0, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], # accepts 4: [-inf, -inf, -inf, -inf, 10.0, -inf, -inf, -inf, -inf, -inf], # most likely to be 1 or 8, less likely to be 3, then 7, and should never be any other value: [-inf, 2.0, -inf, 1.0, -inf, -inf, -inf, -0.01, 2.0, -inf], # N/A: [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf], ] ] ) last_assistant_token_is_eos = False last_validated_token = [] for _ in range(10_000): validated_tokens, n_matches = _speculative_sampling( candidate_input_ids, candidate_logits, candidate_length, new_logits, last_assistant_token_is_eos, ) self.assertTrue(n_matches.item() == 2) self.assertTrue(validated_tokens.tolist()[0][0] == 1) self.assertTrue(validated_tokens.tolist()[0][1] == 4) self.assertTrue(validated_tokens.tolist()[0][2] in [1, 3, 7, 8]) last_validated_token.append(validated_tokens.tolist()[0][2]) # check that the most likely tokens are selected more often than the less likely ones last_token_counts = collections.Counter(last_validated_token) self.assertTrue(last_token_counts[1] > last_token_counts[3] > last_token_counts[7] > 0) self.assertTrue(last_token_counts[8] > last_token_counts[3]) def test_cache_dependant_input_preparation_exporting(self): self.assertFalse( is_torchdynamo_exporting() ) # otherwise this test does not compare two different implementation # Case 1 input_ids = torch.randint(0, 16, (2, 8), dtype=torch.int64)[:, :0] inputs_embeds = torch.rand((2, 8), dtype=torch.float32) cache_position = torch.arange(0, 8, dtype=torch.int64) eager1, eager2 = GenerationMixin()._cache_dependant_input_preparation(input_ids, inputs_embeds, cache_position) export1, export2 = GenerationMixin()._cache_dependant_input_preparation_exporting( input_ids, inputs_embeds, cache_position ) torch.testing.assert_close(eager1, export1) torch.testing.assert_close(eager2, export2) # Case 2 input_ids = torch.randint(0, 16, (2, 8), dtype=torch.int64) inputs_embeds = torch.rand((2, 8), dtype=torch.float32) cache_position = torch.arange(0, 8, dtype=torch.int64) eager1, eager2 = GenerationMixin()._cache_dependant_input_preparation(input_ids, inputs_embeds, cache_position) export1, export2 = GenerationMixin()._cache_dependant_input_preparation_exporting( input_ids, inputs_embeds, cache_position ) torch.testing.assert_close(eager1, export1) torch.testing.assert_close(eager2, export2) # Case 3 input_ids = torch.randint(0, 16, (2, 12), dtype=torch.int64) inputs_embeds = None cache_position = torch.arange(0, 8, dtype=torch.int64) eager1, eager2 = GenerationMixin()._cache_dependant_input_preparation(input_ids, inputs_embeds, cache_position) export1, export2 = GenerationMixin()._cache_dependant_input_preparation_exporting( input_ids, inputs_embeds, cache_position ) torch.testing.assert_close(eager1, export1) torch.testing.assert_close(eager2, export2) # Case 4 input_ids = torch.randint(0, 16, (2, 8), dtype=torch.int64) inputs_embeds = None cache_position = torch.arange(0, 8, dtype=torch.int64) eager1, eager2 = GenerationMixin()._cache_dependant_input_preparation(input_ids, inputs_embeds, cache_position) export1, export2 = GenerationMixin()._cache_dependant_input_preparation_exporting( input_ids, inputs_embeds, cache_position ) torch.testing.assert_close(eager1, export1) torch.testing.assert_close(eager2, export2) global_rng = random.Random() # Copied from tests.test_modeling_common.ids_tensor def ids_tensor(shape, vocab_size, rng=None, name=None): # Creates a random int32 tensor of the shape within the vocab size if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.randint(0, vocab_size - 1)) return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() # Copied from tests.test_modeling_common.floats_tensor def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous() @pytest.mark.generate @require_torch class GenerationIntegrationTests(unittest.TestCase): @slow def test_diverse_beam_search(self): article = """Justin Timberlake and Jessica Biel, welcome to parenthood. The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People. "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports. The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both.""" bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) outputs = bart_model.generate( input_ids, num_beams=4, num_return_sequences=2, num_beam_groups=4, diversity_penalty=2.0, remove_invalid_values=True, ) generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the" " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle" " name, as well as his father's first. It is the first baby for both of them.", "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the" " first child for both. The couple announced the pregnancy in January. The name Silas is the middle" " name of Timberlake's maternal grandfather. It's also his own middle name.", ], ) def test_max_length_if_input_embeds(self): article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) inputs_embeds = model.get_input_embeddings()(input_ids) max_length = 20 input_len = input_ids.shape[-1] out_gen = model.generate(input_ids=input_ids, max_length=max_length) out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, max_length=max_length) self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1]) def test_min_length_if_input_embeds(self): article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) inputs_embeds = model.get_input_embeddings()(input_ids) min_length = 10 input_len = input_ids.shape[-1] out_gen = model.generate(input_ids=input_ids, min_length=min_length) out_gen_embeds = model.generate(inputs_embeds=inputs_embeds, min_length=min_length) self.assertEqual(out_gen.shape[-1], input_len + out_gen_embeds.shape[-1]) def test_custom_stopping_criteria_overload_error(self): article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random") bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) stopping_criteria = StoppingCriteriaList() stopping_criteria.append(MaxLengthCriteria(max_length=42)) with self.assertRaises(ValueError): bart_model.generate(input_ids, stopping_criteria=stopping_criteria) with self.assertRaises(ValueError): bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32) def test_custom_stopping_criteria(self): article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random") bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) class DummyCriteria(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: return input_ids.shape[-1] >= 20 stopping_criteria = StoppingCriteriaList() stopping_criteria.append(DummyCriteria()) self.assertEqual( list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape), [1, 20], ) self.assertEqual( list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape), [1, 18], ) # TODO (joao): replace `stop_sequence` in the pipeline by the more recent `generate` functionality def test_stop_sequence_stopping_criteria(self): prompt = """Hello I believe in""" generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart") output = generator(prompt, max_new_tokens=10) self.assertEqual( output, [{"generated_text": ("Hello I believe in we we we we we we we we we")}], ) output = generator(prompt, stop_sequence=" we") self.assertEqual(output, [{"generated_text": "Hello I believe in we"}]) def test_generate_non_nlp_input_ids_as_kwarg(self): model = ImageGPTForCausalImageModeling.from_pretrained( "hf-internal-testing/tiny-random-imagegpt", max_length=10 ).to(torch_device) input_ids = ids_tensor((3, 5), vocab_size=10) output_sequences_kwargs = model.generate(input_ids=input_ids).cpu() output_sequences = model.generate(input_ids).cpu() self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist()) self.assertEqual(output_sequences.shape, (3, 10)) def test_generate_input_values_as_encoder_kwarg(self): input_values = floats_tensor((2, 250)) model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder") model = model.to(torch_device) output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu() output_sequences = model.generate(input_values, max_length=5).cpu() self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist()) self.assertEqual(output_sequences.shape, (2, 5)) def test_transition_scores_group_beam_search_encoder_decoder(self): articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = BartForConditionalGeneration.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=10, num_beams=2, num_beam_groups=2, num_return_sequences=2, diversity_penalty=1.0, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) model = model.to(torch_device) input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) transition_scores_sum = transition_scores.sum(-1) torch.testing.assert_close(transition_scores_sum, outputs.sequences_scores, rtol=1e-3, atol=1e-3) @slow def test_green_red_watermark_generation(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token_id = tokenizer.eos_token_id model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device) input_len = model_inputs["input_ids"].shape[-1] # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :) watermark_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash") _ = model.generate(**model_inputs, watermarking_config=watermark_config, do_sample=False, max_length=15) # We will not check watermarked text, since we check it in `logits_processors` tests # Checking if generated ids are as expected fails on different hardware args = { "bias": 2.0, "context_width": 1, "seeding_scheme": "selfhash", "greenlist_ratio": 0.25, "hashing_key": 15485863, } output = model.generate(**model_inputs, do_sample=False, max_length=15) output_selfhash = model.generate(**model_inputs, watermarking_config=args, do_sample=False, max_length=15) # Check that the detector is detecting watermarked text detector = WatermarkDetector(model_config=model.config, device=torch_device, watermarking_config=args) detection_out_watermarked = detector(output_selfhash[:, input_len:], return_dict=True) detection_out = detector(output[:, input_len:], return_dict=True) self.assertListEqual(detection_out_watermarked.prediction.tolist(), [True]) self.assertListEqual(detection_out.prediction.tolist(), [False]) """Check the mean bias inserted by the watermarking algorithm.""" @slow def test_synthid_text_watermark_generation_mean_expected_bias(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token_id = tokenizer.eos_token_id model_inputs = tokenizer("I will be", return_tensors="pt").to(torch_device) input_len = 5 batch_size = 200 # generation should work with both input types: WatermarkingConfig or Dict, so let's check it here :) watermark_config = SynthIDTextWatermarkingConfig(keys=[10, 20], ngram_len=5, debug_mode=True) logits_processor = watermark_config.construct_processor(model.config.vocab_size, torch_device) mean_g_values_repeats = [] for _ in range(40): input_ids = torch.zeros( (batch_size, input_len), dtype=torch.int64, device=torch_device, ) model_inputs = { "input_ids": input_ids, "attention_mask": torch.ones_like(input_ids, device=torch_device), } output = model.generate( **model_inputs, watermarking_config=watermark_config, do_sample=True, max_length=500, top_k=1000 ) g_values = logits_processor.compute_g_values(input_ids=output[:, input_len:]) context_repetition_mask = logits_processor.compute_context_repetition_mask( input_ids=output[:, input_len:], ).unsqueeze(dim=2) mean_g_values = torch.masked.mean( g_values, mask=context_repetition_mask, dim=0, keepdim=True, dtype=torch.float64, ) mean_g_values_repeats.append(mean_g_values) mean_g_values = torch.concat(mean_g_values_repeats, dim=0).mean(dim=0) expected_mean_g_value = logits_processor.expected_mean_g_value( vocab_size=model.config.vocab_size, ) atol = 0.03 is_close = torch.isclose( mean_g_values, torch.tensor(expected_mean_g_value, dtype=torch.float64), atol=atol, rtol=0, ) self.assertTrue(torch.all(is_close)) @slow def test_beam_search_example_integration(self): # exactly the example provided in the docstrings of beam search, which previously # failed after directly copying from it. Refer to PR #15555 tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") encoder_input_str = "translate English to German: How old are you?" encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids # lets run beam search using 3 beams num_beams = 3 # define decoder start token ids input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long) input_ids = input_ids * model.config.decoder_start_token_id # add encoder_outputs to model keyword arguments model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)} outputs = model.generate( input_ids, num_beams=num_beams, min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(outputs, ["Wie alt bist du?"]) @slow def test_constrained_beam_search(self): model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids constraints = [ PhrasalConstraint(force_tokens), PhrasalConstraint(force_tokens_2), ] starting_text = ["The soldiers were not prepared and"] input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) outputs = model.generate( input_ids, constraints=constraints, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, max_length=30, remove_invalid_values=True, ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if" " the enemy attacked them, big weapons scared" ], ) @slow def test_constrained_beam_search_mixed(self): model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids flexible_phrases = tokenizer( ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False ).input_ids constraints = [ PhrasalConstraint(force_phrase), DisjunctiveConstraint(flexible_phrases), ] starting_text = ["The soldiers", "The child"] input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) outputs = model.generate( input_ids, constraints=constraints, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, # max_length=20, remove_invalid_values=True, ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The soldiers, who had been stationed at the base for more than a year before being evacuated" " screaming scared", "The child was taken to a local hospital where he died.\n 'I don't think screaming scared", ], ) @slow def test_constrained_beam_search_mixed_mixin(self): model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") force_word = "scared" force_flexible = ["scream", "screams", "screaming", "screamed"] force_words_ids = [ tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids, tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids, ] starting_text = ["The soldiers", "The child"] input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) outputs = model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The soldiers, who had been stationed at the base for more than a year before being evacuated" " screaming scared", "The child was taken to a local hospital where he died.\n 'I don't think screaming scared", ], ) @slow def test_cfg_mixin(self): model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") input = tokenizer(["The dragon flew over Paris,"], return_tensors="pt", return_attention_mask=True) input["input_ids"] = input["input_ids"].to(torch_device) input["attention_mask"] = input["attention_mask"].to(torch_device) outputs = model.generate(**input, max_new_tokens=32, guidance_scale=1.5) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ "The dragon flew over Paris, landing in the Rue de la Bastille. The crowd was so excited " 'that they had to leave the city.\n\n"We\'re going to Paris!"\n' ], ) neg = tokenizer(["France,"], return_tensors="pt", return_attention_mask=True) neg["input_ids"] = neg["input_ids"].to(torch_device) neg["attention_mask"] = neg["attention_mask"].to(torch_device) outputs = model.generate( **input, max_new_tokens=32, guidance_scale=1.5, negative_prompt_ids=neg["input_ids"], negative_prompt_attention_mask=neg["attention_mask"], ) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual( generated_text, [ 'The dragon flew over Paris, landing on the pavement.\n\n"Paris!"\n\n"Paris!"\n\n"' 'Paris!"\n\n"Paris!"\n\n"Paris!"\n\n' ], ) @slow def test_constrained_beam_search_example_translation_mixin(self): tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") encoder_input_str = "translate English to German: How old are you?" force_words = ["sind"] input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids outputs = model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(outputs, ["Wie alt sind Sie?"]) @slow def test_constrained_beam_search_example_integration(self): tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base") encoder_input_str = "translate English to German: How old are you?" encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids # lets run beam search using 5 beams num_beams = 5 # define decoder start token ids input_ids = torch.ones((1, 1), device=model.device, dtype=torch.long) input_ids = input_ids * model.config.decoder_start_token_id # add encoder_outputs to model keyword arguments model_kwargs = {"encoder_outputs": model.get_encoder()(encoder_input_ids, return_dict=True)} constraint_str = "sind" constraint_token_ids = tokenizer.encode(constraint_str)[:-1] # remove eos token outputs = model.generate( input_ids, num_beams=num_beams, force_words_ids=[constraint_token_ids], min_length=5, eos_token_id=model.config.eos_token_id, **model_kwargs, ) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) self.assertListEqual(outputs, ["Wie alt sind Sie?"]) @slow def test_per_row_stopping_criteria(self): text = [ "They completed the challenging puzzle, revealing the hidden", "Today a dragon flew over France", "The aroma of freshly baked pizza filled the kitchen", ] stop_strings = ["secrets"] model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") tokenizer.padding_side = "left" tokenizer.pad_token_id = tokenizer.eos_token_id input_ids = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False).input_ids.to( torch_device ) # normal generation with one stopping criteria out = model.generate(input_ids, max_length=15) out_text = tokenizer.batch_decode(out) expected_out = [ "They completed the challenging puzzle, revealing the hidden secrets of the world.\n", "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced", "The aroma of freshly baked pizza filled the kitchen with a sense of freshness", ] self.assertListEqual(out_text, expected_out) # generation should stop at "secrets" for first batch only, filling the rest with eos tokens out = model.generate(input_ids, max_length=15, stop_strings=stop_strings, tokenizer=tokenizer) out_text = tokenizer.batch_decode(out) expected_out = [ "They completed the challenging puzzle, revealing the hidden secrets<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>", "<|endoftext|><|endoftext|><|endoftext|>Today a dragon flew over France and the French government was forced", "The aroma of freshly baked pizza filled the kitchen with a sense of freshness", ] self.assertListEqual(out_text, expected_out) def test_constrained_beam_search_mixin_type_checks(self): tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random") model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random") encoder_input_str = "translate English to German: How old are you?" input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids with self.assertRaises(ValueError): force_words = ["sind"] force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) with self.assertRaises(ValueError): force_words = ["sind"] force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids] model.generate( input_ids, force_words_ids=force_words_ids, num_beams=10, num_return_sequences=1, no_repeat_ngram_size=1, remove_invalid_values=True, ) with self.assertRaises(ValueError): model.generate(input_ids, force_words_ids=[]) with self.assertRaises(ValueError): model.generate(input_ids, force_words_ids=[[-1]]) with self.assertRaises(ValueError): model.generate(input_ids, force_words_ids=[[[-1]]]) def test_batched_decoder_start_id(self): articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( torch_device ) input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) decoder_start_token_id = bart_model.generation_config.decoder_start_token_id decoder_start_token_id_batch = [decoder_start_token_id] * input_ids.shape[0] outputs = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id) outputs_batched_ids = bart_model.generate(input_ids, decoder_start_token_id=decoder_start_token_id_batch) self.assertListEqual(outputs.tolist(), outputs_batched_ids.tolist()) def test_decoder_start_id_from_config(self): # Refer to: (#30899) articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( torch_device ) input_ids = bart_tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) decoder_start_token_id = bart_model.generation_config.decoder_start_token_id # we should be able to take `decoder_start_token_id` from model's generation config if user passes a `GenerationConfig` type outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False)) # If the generatoin config has no `decoder_start_token_id` or `bos_token_id`, we will raise an error unless user passes it in config bart_model.generation_config.decoder_start_token_id = None bart_model.generation_config.bos_token_id = None outputs_with_user_id = bart_model.generate( input_ids, generation_config=GenerationConfig(do_sample=False, decoder_start_token_id=decoder_start_token_id), ) self.assertListEqual(outputs.tolist(), outputs_with_user_id.tolist()) with self.assertRaises(ValueError): outputs = bart_model.generate(input_ids, generation_config=GenerationConfig(do_sample=False)) def test_contrastive_search_batched(self): # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs) articles = ["Foo", "Bar Baz"] tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device) model.config.eos_token_id = None input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device) input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device) output_sequences_batched = model.generate( input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True ) output_sequences = model.generate( input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True ) batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True) out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True) self.assertEqual(batched_out, out) # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max() self.assertTrue(max_score_diff < 1e-5) def test_logits_processor_not_inplace(self): article = "Today a dragon flew over Paris." model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device) out = model.generate(input_ids, output_logits=True, output_scores=True, return_dict_in_generate=True) out_with_temp = model.generate( input_ids, temperature=0.5, do_sample=True, output_logits=True, output_scores=True, return_dict_in_generate=True, ) # if no logits processor is used, scores == logits. Otherwise, the processor has to modify the scores self.assertListEqual(out.logits[-1].tolist(), out.scores[-1].tolist()) self.assertNotEqual(out_with_temp.logits[-1].tolist(), out_with_temp.scores[-1].tolist()) def test_eos_token_id_int_and_list_top_k_top_sampling(self): # Has TF equivalent: this test relies on random sampling generation_kwargs = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } expectation = 20 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors="pt").to(torch_device) model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) # Only some seeds will work both on CPU/GPU for a fixed `expectation` value. # The selected seed is not guaranteed to work on all torch versions. torch.manual_seed(1) eos_token_id = 846 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) torch.manual_seed(1) eos_token_id = [846, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_model_kwarg_encoder_signature_filtering(self): # Has TF equivalent: ample use of framework-specific code bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") article = """Hugging Face is a technology company based in New York and Paris.""" input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( torch_device ) output = bart_model.generate(input_ids).cpu().numpy() # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and # saves the day. class FakeBart(BartForConditionalGeneration): def forward(self, input_ids, foo=None, **kwargs): return super().forward(input_ids, **kwargs) bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device) fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy() self.assertTrue(np.array_equal(output, fake_output)) # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail # because it doesn't do signature filtering. class FakeEncoder(bart_model.model.encoder.__class__): def forward(self, input_ids, **kwargs): return super().forward(input_ids, **kwargs) fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device) bart_model.model.encoder = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) fake_output = bart_model.generate(input_ids).cpu().numpy() with self.assertRaises(TypeError): # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo" bart_model.generate(input_ids, foo="bar") def test_default_max_length_warning(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # Default generation config value of 20 -> emits warning with self.assertWarns(UserWarning): model.generate(input_ids) # Explicitly setting max_length to 20 -> no warning with warnings.catch_warnings(record=True) as warning_list: model.generate(input_ids, max_length=20) self.assertEqual(len(warning_list), 0) # Generation config max_length != 20 -> no warning with warnings.catch_warnings(record=True) as warning_list: # generation_config is modified -> legacy mode is disabled = generation_config takes precedence model.generation_config.max_length = 10 model.generate(input_ids) self.assertEqual(len(warning_list), 0) def test_length_warning_assisted_generation(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id assistant.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # This should not raise any warning that min length is not feasible in candidate generation with warnings.catch_warnings(record=True) as warning_list: model.generate( input_ids, assistant_model=assistant, min_new_tokens=10, max_length=20, ) self.assertEqual(len(warning_list), 0) def test_default_assisted_generation(self): # Initialize the GenerationConfig object config = GenerationConfig() # Check the default values self.assertEqual(config.num_assistant_tokens, 20) self.assertEqual(config.num_assistant_tokens_schedule, "constant") self.assertEqual(config.assistant_confidence_threshold, 0.4) self.assertEqual(config.is_assistant, False) def test_generated_length_assisted_generation(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id assistant.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) input_length = input_ids.shape[-1] out = model.generate( input_ids, assistant_model=assistant, min_new_tokens=10, max_new_tokens=20, ) self.assertTrue((10 + input_length) <= out.shape[-1] <= (20 + input_length)) out = model.generate( input_ids, assistant_model=assistant, min_new_tokens=10, ) self.assertTrue((input_length + 10) <= out.shape[-1]) out = model.generate( input_ids, assistant_model=assistant, max_new_tokens=7, ) self.assertTrue(out.shape[-1] <= (input_length + 7)) def test_model_kwarg_assisted_decoding_decoder_only(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model.generation_config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) # Traditional way of generating text outputs_normal = model.generate(input_ids) self.assertEqual(outputs_normal.shape, (1, 20)) # Should be different with token_type_ids outputs_tti = model.generate( input_ids, token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device), ) with self.assertRaises(AssertionError): self.assertListEqual(outputs_tti.tolist(), outputs_normal.tolist()) # Assistant model assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) assistant.config.pad_token_id = tokenizer.eos_token_id # If assisted generation passes model_kwargs correctly, should be same as previous outputs_assisted = model.generate( input_ids, token_type_ids=torch.zeros(input_ids.shape, dtype=torch.long).to(torch_device), assistant_model=assistant, ) self.assertListEqual(outputs_assisted.tolist(), outputs_tti.tolist()) def test_assisted_decoding_num_assistant_tokens_heuristic_schedule(self): # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly. prompt = "Alice and Bob" checkpoint = "EleutherAI/pythia-160m-deduped" tokenizer = AutoTokenizer.from_pretrained(checkpoint) inputs = tokenizer(prompt, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(checkpoint) assistant_model = model assistant_model.generation_config.num_assistant_tokens = 5 assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic" generation_kwargs = { "eos_token_id": -1, "max_new_tokens": 5, "do_sample": False, "assistant_model": assistant_model, } model.generate(**inputs, **generation_kwargs) # update_candidate_strategy is called only once and therefore, assistant_model.generation_config.num_assistant_tokens should be either 4 or 7 self.assertTrue(assistant_model.generation_config.num_assistant_tokens in (4, 7)) def test_assisted_decoding_num_assistant_tokens_heuristic_transient_schedule(self): # This test ensures that the assisted generation num_assistant_tokens 'heuristic' schedule works properly. prompt = "Alice and Bob" checkpoint = "EleutherAI/pythia-160m-deduped" tokenizer = AutoTokenizer.from_pretrained(checkpoint) inputs = tokenizer(prompt, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(checkpoint) assistant_model = model assistant_model.generation_config.num_assistant_tokens = 5 assistant_model.generation_config.num_assistant_tokens_schedule = "heuristic_transient" generation_kwargs = { "eos_token_id": -1, "max_new_tokens": 5, "do_sample": False, "assistant_model": assistant_model, } model.generate(**inputs, **generation_kwargs) # update_candidate_strategy is called once but assistant_model.generation_config.num_assistant_tokens should stay 5 self.assertEqual(assistant_model.generation_config.num_assistant_tokens, 5) @slow def test_validate_assistant(self): # Generate a random sample: inputs = np.random.rand(160000) # Load a main encoder-decoder model: model_id = "openai/whisper-large-v2" processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, use_safetensors=True, ) model.to(torch_device) # process the input: features = processor(inputs, return_tensors="pt").to(torch_device) # Load an encoder-decoder assistant with same encoder as the main model: assistant_distil_model_id = "distil-whisper/distil-large-v2" assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained( assistant_distil_model_id, use_safetensors=True, ).to(torch_device) self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum()) # Load its decoder only version: assistant_causal_lm = AutoModelForCausalLM.from_pretrained( assistant_distil_model_id, use_safetensors=True, ).to(torch_device) self.assertTrue(model.generate(**features, assistant_model=assistant_causal_lm).sum()) # Load an encoder-decoder assistant with a different encoder than the main model: assistant_distil_model_id = "openai/whisper-tiny" assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained( assistant_distil_model_id, use_safetensors=True, ).to(torch_device) self.assertTrue(model.generate(**features, assistant_model=assistant_seq_to_seq).sum()) # Load its decoder only version: assistant_causal_lm = AutoModelForCausalLM.from_pretrained( assistant_distil_model_id, use_safetensors=True, ).to(torch_device) # It will raise an error as the encoder of the main and assistant model are not compatible: with self.assertRaises(ValueError): model.generate(**features, assistant_model=assistant_causal_lm) # Load an encoder-decoder model with a different tokenizer than the main model: assistant_distil_model_id = "hf-internal-testing/tiny-random-SeamlessM4Tv2ForSpeechToText" assistant_seq_to_seq = AutoModelForSpeechSeq2Seq.from_pretrained( assistant_distil_model_id, ).to(torch_device) # This should raise an error as the main and assistant model don't use the same tokenizer: with self.assertRaises(ValueError): model.generate(**features, assistant_model=assistant_seq_to_seq) def test_compare_unprocessed_logit_scores(self): # Get unprocessed logit scores back from model generate function. # Assert that unprocessed logits from generate() are same as those from modal eval() # tell model to generate text and return unprocessed/unwarped logit scores tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = "generate yes or no: " input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device) model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) with torch.no_grad(): # Get logits for the next token from fwd pass logits_fwd = model(input_ids).logits[:, -1, :][0] # Get logits for the next token from generate function outputs = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=1, do_sample=True, ) logits_gen = outputs.logits[0][0] # assert that unprocessed logits from generate() are same as those from modal eval() self.assertListEqual(logits_fwd.tolist(), logits_gen.tolist()) def test_return_unprocessed_logit_scores(self): # tell model to generate text and return unprocessed/unwarped logit scores tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = "generate yes or no: " input_ids = tokenizer([text], return_tensors="pt").input_ids.to(torch_device) model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) outputs = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_logits=True, max_new_tokens=3 ) # perform dummy check if unpreprocessed logits make sense. # do preselection on high probabilities; find scores of y and n tokens probs_all = torch.nn.functional.softmax(outputs.logits[2][0], dim=-1) indices = torch.argwhere(probs_all > 0.001) indices = indices[:, -1] tokens_max = tokenizer.batch_decode(indices, skip_special_tokens=True) probs_max = probs_all[probs_all > 0.001] self.assertTrue(len(indices) >= 2) next_token_dict = {str(t): p for t, p in zip(tokens_max, probs_max)} self.assertTrue("n" in next_token_dict) self.assertTrue("y" in next_token_dict) y_prob = next_token_dict["y"] n_prob = next_token_dict["n"] self.assertTrue(y_prob > 0.001 and n_prob > 0.001) self.assertTrue(y_prob <= 1.0 and n_prob <= 1.0) @slow @require_torch_multi_accelerator def test_assisted_decoding_in_different_accelerator(self): device_0 = f"{torch_device}:0" if torch_device != "cpu" else "cpu" device_1 = f"{torch_device}:1" if torch_device != "cpu" else "cpu" model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to(device_0) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( device_1 ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model.config.pad_token_id = tokenizer.eos_token_id assistant.config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) input_length = input_ids.shape[-1] out = model.generate( input_ids, assistant_model=assistant, max_new_tokens=20, ) self.assertTrue(input_length <= out.shape[-1] <= input_length + 20) @slow @require_torch_accelerator def test_assisted_decoding_model_in_accelerator_assistant_in_cpu(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( torch_device ) assistant = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( "cpu" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model.config.pad_token_id = tokenizer.eos_token_id assistant.config.pad_token_id = tokenizer.eos_token_id text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) input_length = input_ids.shape[-1] out = model.generate( input_ids, assistant_model=assistant, max_new_tokens=20, ) self.assertTrue(input_length <= out.shape[-1] <= input_length + 20) def test_special_tokens_fall_back_to_model_default(self): model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM").to( torch_device ) test_bos_id = 50 # Sanity-check: the model has a BOS token set, and the first generated token is a BOS token gen_output = model.generate() self.assertTrue(model.generation_config.bos_token_id is not None) self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0]) # If we pass a generation config **with** a BOS token, `generate` will use it generation_config = GenerationConfig(bos_token_id=test_bos_id) gen_output = model.generate(generation_config=generation_config) self.assertFalse(model.generation_config.bos_token_id == gen_output[0, 0]) self.assertTrue(generation_config.bos_token_id == gen_output[0, 0]) self.assertTrue(test_bos_id == gen_output[0, 0]) # If we pass a generation config **without** a BOS token, `generate` will fetch the BOS token from # `model.generation_config` generation_config = GenerationConfig(bos_token_id=None) gen_output = model.generate(generation_config=generation_config) self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0]) self.assertFalse(test_bos_id == gen_output[0, 0]) self.assertTrue(generation_config.bos_token_id is None) # Changing `model.generation_config` will affect fallback behavior model.generation_config.bos_token_id = test_bos_id gen_output = model.generate(generation_config=generation_config) self.assertTrue(model.generation_config.bos_token_id == gen_output[0, 0]) self.assertTrue(test_bos_id == gen_output[0, 0]) self.assertTrue(generation_config.bos_token_id is None) def test_speculative_decoding_equals_regular_decoding(self): draft_name = "double7/vicuna-68m" target_name = "Qwen/Qwen2-0.5B-Instruct" draft_model = AutoModelForCausalLM.from_pretrained(draft_name) target_model = AutoModelForCausalLM.from_pretrained(target_name) assistant_tokenizer = AutoTokenizer.from_pretrained(draft_name) target_tokenizer = AutoTokenizer.from_pretrained(target_name) prompt_size = torch.randint(low=20, high=100, size=(1,)) max_new_tokens = torch.randint(low=10, high=50, size=(1,)) input_ids = (torch.rand(1, prompt_size[0]) * 100).to(int) + 50 max_new_tokens_item = max_new_tokens[0].item() expected_out = target_model.generate(input_ids, do_sample=False, max_new_tokens=max_new_tokens_item) predicted_out = target_model.generate( input_ids, do_sample=False, max_new_tokens=max_new_tokens_item, assistant_model=draft_model, tokenizer=target_tokenizer, assistant_tokenizer=assistant_tokenizer, ) self.assertEqual(expected_out.shape, predicted_out.shape) self.assertTrue((expected_out == predicted_out).all().item()) @pytest.mark.generate @require_torch_multi_accelerator def test_generate_with_static_cache_multi_accelerator(self): """ Tests if the static cache has been set correctly and if generate works correctly when we are using multi-acceleratorss. """ # need to split manually as auto doesn't work well with unbalanced model device_map = {"model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": 1, "model.norm": 1, "lm_head": 0} model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map=device_map ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) generation_kwargs = { "max_new_tokens": 20, "cache_implementation": "static", "return_dict_in_generate": True, # Required to return `past_key_values` } results = model.generate(input_ids, **generation_kwargs) self.assertTrue(isinstance(results.past_key_values, StaticCache)) # check device of each layer key_cache_0 = results.past_key_values.key_cache[0] value_cache_0 = results.past_key_values.value_cache[0] self.assertTrue(key_cache_0.device == value_cache_0.device == torch.device(0)) key_cache_1 = results.past_key_values.key_cache[1] value_cache_1 = results.past_key_values.value_cache[1] self.assertTrue(key_cache_1.device == value_cache_1.device == torch.device(1)) @pytest.mark.generate @require_torch_multi_accelerator def test_generate_multi_accelerator_causal_mask(self): """ Tests that cache position device doesn't clash with causal mask device when we are using multi-accelerators. In real life happens only when multimodal encoder size is big, so `embed_tokens` gets allocated to the next device. The error will be triggered whenever a bacthed input is used, so that `causal_mask` is actually prepared instead of being `None`. """ # need to split manually as auto doesn't work well with unbalanced model device_map = { "visual": 0, "model.embed_tokens": 1, "model.layers.0": 1, "model.layers.1": 1, "model.rotary_emb": 1, "model.norm.weight": 1, "lm_head": 1, } model = AutoModelForImageTextToText.from_pretrained( "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration", device_map=device_map ) processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration") text = ["Hello world", "Today I went to the supermarket to buy"] inputs = processor(text=text, padding=True, return_tensors="pt").to(torch_device) _ = model.generate(**inputs, max_new_tokens=20) @pytest.mark.generate @require_torch_multi_accelerator def test_init_static_cache_multi_accelerator(self): """ Tests if the static cache has been set correctly when we initialize it manually in a multi-accelerator setup. """ # need to split manually as auto doesn't work well with unbalanced model device_map = {"model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": 1, "model.norm": 1, "lm_head": 0} model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map=device_map ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") text = "Hello world" tokenized_inputs = tokenizer([text], return_tensors="pt") input_ids = tokenized_inputs.input_ids.to(torch_device) generation_kwargs = { "max_new_tokens": 20, "return_dict_in_generate": True, # Required to return `past_key_values` } # TODO: We need to raise a warning in case the cache is not set correctly # with self.assertRaisesRegex(ValueError, "If you are manually initializing the cache"): # past_key_values = StaticCache( # config=model.config, max_batch_size=1, max_cache_len=30, device=torch_device, dtype=model.dtype # ) # results = model.generate(input_ids, past_key_values=past_key_values, **generation_kwargs) # deduced from the device_map : layer 0 on device 0 and layer 1 on device 1 layer_device_map = {0: 0, 1: 1} past_key_values = StaticCache( config=model.config, max_batch_size=1, max_cache_len=30, device=torch_device, dtype=model.dtype, layer_device_map=layer_device_map, ) results = model.generate(input_ids, past_key_values=past_key_values, **generation_kwargs) # check device of each layer key_cache_0 = results.past_key_values.key_cache[0] value_cache_0 = results.past_key_values.value_cache[0] self.assertTrue(key_cache_0.device == value_cache_0.device == torch.device(0)) key_cache_1 = results.past_key_values.key_cache[1] value_cache_1 = results.past_key_values.value_cache[1] self.assertTrue(key_cache_1.device == value_cache_1.device == torch.device(1)) @slow def test_padding_input_contrastive_search_gpt2(self): # Load the pre-trained GPT-2 model and tokenizer model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2", clean_up_tokenization_spaces=True) # Set the tokenizer to left-pad the sequences tokenizer.padding_side = "left" # Define the PAD token as the EOS token tokenizer.pad_token = tokenizer.eos_token model.generation_config.pad_token_id = model.generation_config.eos_token_id # Define the input prompt prompt_text = "The whispered legends of the haunted mansion spoke" # Tokenize the input prompt encoded_prompt = tokenizer(prompt_text, return_tensors="pt", padding=True) input_ids = encoded_prompt.input_ids.to(torch_device) attention_mask = encoded_prompt.attention_mask.to(torch_device) # Define the contrastive search params penalty_alpha = 0.6 top_k = 4 # Define the padding length to add to the input IDs and attention mask padding_length = 10 # Generate text without padding outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_no_padding = tokenizer.decode(outputs[0], skip_special_tokens=True) # Pad the input IDs and attention mask on the left padded_input_ids = F.pad( input_ids, (padding_length, 0), "constant", value=model.generation_config.pad_token_id ) padded_attention_mask = F.pad(attention_mask, (padding_length, 0), "constant", value=0) # Generate text with padded inputs outputs_with_padding = model.generate( input_ids=padded_input_ids, attention_mask=padded_attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_with_padding = tokenizer.decode(outputs_with_padding[0], skip_special_tokens=True) # Assert that the generated texts are identical for padded and non-padded inputs self.assertEqual(generated_text_no_padding, generated_text_with_padding) self.assertEqual( generated_text_with_padding, 'The whispered legends of the haunted mansion spoke of the "souls of the dead" who were "falling ' 'out of the sky" and "falling into the sea."\n\nThe ghostly apparitions were said to have been ' 'created by the spirits of the dead, who were "falling out of the sky" and "falling into the sea', ) @slow def test_padding_input_contrastive_search_t5(self): # Load the pre-trained T5 model and tokenizer model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small", clean_up_tokenization_spaces=True) # Define the input prompt prompt_text = "translate English to German: I need to finish this task before the end of the day." # Tokenize the input prompt encoded_prompt = tokenizer(prompt_text, return_tensors="pt") input_ids = encoded_prompt.input_ids.to(torch_device) attention_mask = encoded_prompt.attention_mask.to(torch_device) # Define the decoder prompt decoder_prompt_text = "Ich muss diese Aufgabe" encoded_decoder_prompt = tokenizer(decoder_prompt_text, add_special_tokens=False, return_tensors="pt") decoder_input_ids = encoded_decoder_prompt.input_ids.to(torch_device) decoder_attention_mask = encoded_decoder_prompt.attention_mask.to(torch_device) # Define the contrastive search params penalty_alpha = 0.6 top_k = 4 # Generate text without padding outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_no_padding = tokenizer.decode(outputs[0], skip_special_tokens=True) # Define the padding length to add to the input IDs and attention mask padding_length = 10 # Pad the decoder input IDs and attention mask on the left padded_decoder_input_ids = F.pad( decoder_input_ids, (padding_length, 0), "constant", value=model.generation_config.pad_token_id ) padded_decoder_attention_mask = F.pad(decoder_attention_mask, (padding_length, 0), "constant", value=0) # Since the decoder_start_token_id is the same as the pad_token_id, # the last padded token represents the decoder start token. # Set the attention mask for the decoder_start_token_id to True (1). padded_decoder_attention_mask[:, padding_length - 1] = 1 # Generate text with padded inputs outputs_with_padding = model.generate( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=padded_decoder_input_ids, decoder_attention_mask=padded_decoder_attention_mask, do_sample=False, penalty_alpha=penalty_alpha, top_k=top_k, max_new_tokens=64, ) generated_text_with_padding = tokenizer.decode(outputs_with_padding[0], skip_special_tokens=True) # Assert that the generated texts are identical for padded and non-padded inputs self.assertEqual(generated_text_no_padding, generated_text_with_padding) self.assertEqual(generated_text_no_padding, "Ich muss diese Aufgabe vor Ende des Tages beenden.") def test_prepare_inputs_for_generation_decoder_llm(self): """Tests GenerationMixin.prepare_inputs_for_generation against expected usage with decoder-only llms.""" config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") model = model.to(torch_device) # 1. Sanity check: the model's `prepare_inputs_for_generation` comes from `GenerationMixin` self.assertTrue("GenerationMixin" in str(model.prepare_inputs_for_generation)) # 2. If we pass input ids by themselves, we should get back the same input ids input_ids = torch.tensor([[1, 2, 3], [4, 5, 6]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation(input_ids) self.assertTrue(torch.all(model_inputs["input_ids"] == input_ids)) # 3. If we pass the attention mask too, we will get back the attention mask and position ids built from it attention_mask = torch.tensor([[1, 1, 1], [1, 1, 1]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation(input_ids, attention_mask=attention_mask) self.assertTrue(torch.all(model_inputs["attention_mask"] == attention_mask)) self.assertTrue(model_inputs["position_ids"].shape == input_ids.shape) # 4. `use_cache` (and other kwargs) are forwarded self.assertFalse("use_cache" in model_inputs) # From the previous input, there is no `use_cache` model_inputs = model.prepare_inputs_for_generation(input_ids, use_cache=True, foo="bar") self.assertTrue(model_inputs["use_cache"] is True) self.assertTrue(model_inputs["foo"] == "bar") # 5. When we pass a cache, we discard data related to already seen tokens in some tensors. We are now also # forced to pass a correctly prepared `cache_positions` to slice the data accordingly. init_input_ids = input_ids[:, :2] dynamic_cache = DynamicCache() dynamic_cache = model(init_input_ids, past_key_values=dynamic_cache).past_key_values with self.assertRaises(AttributeError): # past_key_values + no cache_position -> exception model_inputs = model.prepare_inputs_for_generation(input_ids, past_key_values=dynamic_cache) cache_position = torch.arange(input_ids.shape[-1], dtype=torch.long).to(torch_device) cache_position = cache_position[dynamic_cache.get_seq_length() :] model_inputs = model.prepare_inputs_for_generation( input_ids, past_key_values=dynamic_cache, cache_position=cache_position, attention_mask=attention_mask ) self.assertTrue("past_key_values" in model_inputs) self.assertTrue(torch.all(model_inputs["cache_position"] == cache_position)) self.assertTrue(model_inputs["input_ids"].shape[-1] == 1) # 1 = 3 fed tokens - 2 tokens in the cache self.assertTrue(model_inputs["position_ids"].shape[-1] == 1) self.assertTrue(model_inputs["attention_mask"].shape[-1] == 3) # we still need the full attention mask! # 6. If we pass a `static_cache`, the attention mask will be prepared as a static shape 4D mask max_cache_len = 10 batch_size = 2 query_length = input_ids.shape[-1] - init_input_ids.shape[-1] static_cache = StaticCache( config=config, max_batch_size=batch_size, max_cache_len=max_cache_len, device=torch_device, dtype=torch.float32, ) static_cache = model(init_input_ids, past_key_values=static_cache).past_key_values model_inputs = model.prepare_inputs_for_generation( input_ids, past_key_values=static_cache, cache_position=cache_position, attention_mask=attention_mask ) self.assertTrue("past_key_values" in model_inputs) self.assertTrue(list(model_inputs["attention_mask"].shape) == [batch_size, 1, query_length, max_cache_len]) # 7. We can also pass `inputs_embeds` as the embedded prompt. Because `generate` will append its result to # `input_ids` and the models will only accept one of the two inputs (`input_ids` or `inputs_embeds`), we # a) must use the cache b) must expect `input_ids` after the prompt is processed init_inputs_embeds = model.get_input_embeddings()(init_input_ids) init_cache_positions = torch.arange(init_input_ids.shape[-1], dtype=torch.long).to(torch_device) empty_cache = DynamicCache() # Prompt processing model_inputs = model.prepare_inputs_for_generation( init_input_ids, past_key_values=empty_cache, inputs_embeds=init_inputs_embeds, cache_position=init_cache_positions, ) self.assertTrue(model_inputs["input_ids"] is None) self.assertTrue(model_inputs["inputs_embeds"] is not None) # After prompt processing model_inputs = model.prepare_inputs_for_generation( input_ids, past_key_values=dynamic_cache, inputs_embeds=init_inputs_embeds, cache_position=cache_position ) self.assertTrue(model_inputs["input_ids"] is not None) self.assertTrue(model_inputs["inputs_embeds"] is None) def test_prepare_inputs_for_generation_encoder_decoder_llm(self): """ Same as `test_prepare_inputs_for_generation_decoder_llm` but for encoder-decoder models. Main difference: we should look for `decoder_input_ids`, instead of `input_ids`. """ model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") model = model.to(torch_device) # 1. Sanity check: the model's `prepare_inputs_for_generation` comes from `GenerationMixin` self.assertTrue("GenerationMixin" in str(model.prepare_inputs_for_generation)) # 2. If we pass input ids by themselves, we should get back the same input ids -- with the encoder-decoder key decoder_input_ids = torch.tensor([[1, 2, 3], [4, 5, 6]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation(decoder_input_ids) self.assertTrue(torch.all(model_inputs["decoder_input_ids"] == decoder_input_ids)) # 3. If we pass the attention mask too, we will get back the attention mask. Encoder-decoder models usually # don't use `position_ids` decoder_attention_mask = torch.tensor([[1, 1, 1], [1, 1, 1]]).to(torch_device) model_inputs = model.prepare_inputs_for_generation( decoder_input_ids, decoder_attention_mask=decoder_attention_mask ) self.assertTrue(torch.all(model_inputs["decoder_attention_mask"] == decoder_attention_mask)) self.assertTrue("position_ids" not in model_inputs) # 4. `use_cache` (and other kwargs, like the encoder outputs) are forwarded self.assertFalse("use_cache" in model_inputs) # From the previous input, there is no `use_cache` model_inputs = model.prepare_inputs_for_generation(decoder_input_ids, use_cache=True, encoder_outputs="foo") self.assertTrue(model_inputs["use_cache"] is True) self.assertTrue(model_inputs["encoder_outputs"] == "foo") # See the decoder-only test for more corner cases. The code is the same, so we don't repeat it here. def test_generate_compile_fullgraph_tiny(self): """ Tests that we can call end-to-end generation with a tiny model (i.e. doesn't crash) NOTE: this test is quite slow (~20s on a consumer desktop), but it is important that we keep it as part of the non-slow tests to prevent regressions! """ model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-LlamaForCausalLM", torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") # compile generate compiled_generate = torch.compile(model.generate, fullgraph=True, mode="reduce-overhead") # compiled generate does NOT accept parameterization except a) model inputs b) a generation config generation_config = copy.deepcopy(model.generation_config) generation_config.pad_token_id = model.config.eos_token_id model_inputs = tokenizer(["Write a poem about the market crashing in summer"], return_tensors="pt") model_inputs = model_inputs.to(model.device) gen_out = compiled_generate(**model_inputs, generation_config=generation_config) self.assertTrue(gen_out.shape[1] > model_inputs["input_ids"].shape[1]) # some text was generated @require_read_token @slow def test_assisted_generation_early_exit(self): """ Tests that assisted generation with early exit works as expected. Under the hood, this has complex cache manipulation, which will cause the test to fail if something goes wrong there. """ expected_output = "Alice and Bob are playing a game of poker. Alice has a pair of 8s and Bob has a pair" prompt = "Alice and Bob" checkpoint = "facebook/layerskip-llama3.2-1B" tokenizer = AutoTokenizer.from_pretrained(checkpoint) inputs = tokenizer(prompt, return_tensors="pt").to(torch_device) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(torch_device) original_outputs = model.generate(**inputs, do_sample=False, max_new_tokens=20) original_decoded = tokenizer.batch_decode(original_outputs, skip_special_tokens=True) self.assertEqual(original_decoded, [expected_output]) outputs_assisted = model.generate(**inputs, assistant_early_exit=4, do_sample=False, max_new_tokens=20) decoded_assisted = tokenizer.batch_decode(outputs_assisted, skip_special_tokens=True) self.assertEqual(decoded_assisted, [expected_output]) @slow def test_beam_search_advanced_stopping_criteria(self): """ Tests that beam search works with a stopping criteria that is not max length or EOS token. Prior to the beam search vectorization PR (#35802), beam search was not accepting other stopping criteria. Test inspired on the original issue (#34843). """ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct").to(torch_device) prompt = ( "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. " "How many clips did Natalia sell altogether in April and May?" ) tokens = tokenizer(prompt, return_tensors="pt").to(torch_device) generation_config = GenerationConfig(num_beams=3, do_sample=False, length_penalty=1.0, max_new_tokens=100) # This particular prompt should result in a ":" being present in the answer out = model.generate(**tokens, generation_config=generation_config, tokenizer=tokenizer) output_text = tokenizer.decode(out[0], skip_special_tokens=True) last_non_special_token_decoded = tokenizer.decode(out[out != tokenizer.pad_token_id][-1]) self.assertTrue(":" in output_text) self.assertFalse(":" in output_text[-5:]) self.assertFalse(":" in last_non_special_token_decoded) # Adding an advanced stopping criteria: text generation should stop when a ":" is generated. # Note that: # 1 - the text up to ":" doesn't have to be the same, it can belong to a different beam # 2 - ":" may not be the last char, but it must be in the last non-special token generation_config.stop_strings = ":" out = model.generate(**tokens, generation_config=generation_config, tokenizer=tokenizer) output_text = tokenizer.decode(out[0], skip_special_tokens=True) last_non_special_token_decoded = tokenizer.decode(out[out != tokenizer.pad_token_id][-1]) self.assertTrue(":" in output_text) self.assertTrue(":" in output_text[-5:]) self.assertTrue(":" in last_non_special_token_decoded) def test_max_time(self): tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2") model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2") model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) MAX_TIME = 0.1 MAX_LENGTH = 64 # sampling on start = datetime.datetime.now() model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) # sampling off start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) # beam search start = datetime.datetime.now() model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) # sanity check: no time limit start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=None, max_length=MAX_LENGTH) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) def test_validate_generation_inputs(self): """Tests validation of inputs to `generate`""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") encoder_input_str = "Hello world" input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(ValueError, "do_samples"): model.generate(input_ids, do_samples=True) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(ValueError, "foo"): fake_model_kwargs = {"foo": "bar"} model.generate(input_ids, **fake_model_kwargs) # however, valid model_kwargs are accepted valid_model_kwargs = {"attention_mask": torch.tensor(np.zeros_like(input_ids))} model.generate(input_ids, **valid_model_kwargs) def test_custom_logits_processor(self): """Tests that custom logits processors can be used in `generate`, and that redundant arguments are caught.""" bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-bart", min_length=1) input_ids = bart_tokenizer(article, return_tensors="pt").input_ids logits_processor = LogitsProcessorList() logits_processor.append(MinLengthLogitsProcessor(min_length=10, eos_token_id=0)) # it should not be allowed to both define `min_length` via config and `logits_processor` list with self.assertRaises(ValueError): bart_model.generate(input_ids, logits_processor=logits_processor, min_length=10) bart_model.generate(input_ids, logits_processor=logits_processor) def test_transition_scores_greedy_search(self): """Test that `compute_transition_scores` is working as expected with gready search""" articles = ["Justin Timberlake", "Michael Phelps"] tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2") model.generation_config.eos_token_id = None input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_new_tokens=5, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores) transition_scores = transition_scores.cpu().numpy() expected_scores = np.array( [ [-57.8844, -60.45698, -70.16364, -65.50791, -66.35648], [-54.417572, -60.216614, -62.661243, -58.621933, -58.298683], ] ) self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) def test_transition_scores_greedy_search_normalized(self): """ Test that `compute_transition_scores` is working as expected with gready search, with `normalize_logits=True` """ articles = ["Justin Timberlake", "Michael Phelps"] tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2") model.generation_config.eos_token_id = None input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_new_tokens=5, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=True, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) transition_scores = transition_scores.cpu().numpy() expected_scores = np.array( [ [-2.538938, -2.2694316, -2.1580915, -1.572299, -2.6719835], [-1.8826028, -2.2461371, -1.7556462, -2.9644494, -1.7996008], ] ) self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) def test_transition_scores_beam_search_encoder_decoder(self): """ Test that `compute_transition_scores` is working as expected with beam search and encoder-decoder models """ articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-bart") input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_length=10, num_beams=4, num_return_sequences=2, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_search_encoder_decoder_with_eos(self): """ Test that `compute_transition_scores` is working as expected with beam search and encoder-decoder models, when an EOS token is defined """ articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-bart") input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_length=10, num_beams=4, num_return_sequences=2, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_search_decoder_only(self): """ Test that `compute_transition_scores` is working as expected with beam search and decoder-only models """ articles = [ "Justin Timberlake", "Michael Phelps", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_length=10, num_beams=4, num_return_sequences=2, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) @slow def test_transition_scores_early_stopping(self): """ Test that `compute_transition_scores` is working as expected with beam search and early stopping This is an aggressive test that makes sure that `beam_search's` transition scores are computed correctly for varying `num_return_sequences`, `num_beams` and `batch_size > 1` 2 x input_ids for "question: How are you? \n context: I had a long day, " """ input_ids = torch.tensor(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]) model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small") model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids, max_length=10, return_dict_in_generate=True, output_scores=True, forced_eos_token_id=model.config.eos_token_id, num_beams=4, do_sample=False, num_return_sequences=3, length_penalty=0.0, ) transition_scores = model.compute_transition_scores( sequences=outputs.sequences, scores=outputs.scores, beam_indices=outputs.beam_indices ) transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores)) def test_encoder_decoder_generate_attention_mask(self): """ Test that `generate` automagically creates the correct `attention_mask` for encoder-decoder models (which has a different keyword) """ articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") # need extreme generation values here to force this test # to fail when `attention_mask` is not correctly treated in generate model = AutoModelForSeq2SeqLM.from_pretrained( "hf-internal-testing/tiny-random-bart", ) model.config.eos_token_id = None input_ids = tokenizer(articles[0], return_tensors="pt").input_ids input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) input_ids_batched = input_ids_batched.to(torch_device) generate_kwargs = { "return_dict_in_generate": True, "output_scores": True, "max_length": 50, "num_beams": 5, "num_return_sequences": 5, } output_sequences_batched = model.generate(input_ids=input_ids_batched, **generate_kwargs) output_sequences = model.generate(input_ids=input_ids, **generate_kwargs) batched_out = output_sequences_batched.sequences_scores out = output_sequences.sequences_scores batched_out = batched_out.cpu().numpy() out = out.cpu().numpy() diff = np.abs(np.sum(batched_out[:5]) - np.sum(out)) self.assertTrue(diff < 1e-4) def test_generate_input_ids_as_kwarg(self): """Test that `input_ids` work equally as a positional and keyword argument in decoder-only models""" article = "I need input_ids to generate" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15) input_ids = tokenizer(article, return_tensors="pt").input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) output_sequences_kwargs = model.generate(input_ids=input_ids) output_sequences = model.generate(input_ids) output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (1, 15)) def test_generate_input_ids_as_encoder_kwarg(self): """Test that `input_ids` work equally as a positional and keyword argument in encoder-decoder models""" article = "Justin Timberlake and Jessica Biel, welcome to parenthood." tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-bart") model.config.eos_token_id = None input_ids = tokenizer(article, return_tensors="pt").input_ids model = model.to(torch_device) input_ids = input_ids.to(torch_device) output_sequences_kwargs = model.generate(input_ids=input_ids, max_length=5) output_sequences = model.generate(input_ids, max_length=5) output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (1, 5)) def test_generate_inputs_and_encoder_kwargs(self): """ Test that an exception is thrown if the main tensor (`input_ids` in LLMs) is passed as both a positional and keyword argument """ article = "I need input_ids to generate" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10) input_ids = tokenizer(article, return_tensors="pt").input_ids with self.assertRaises(ValueError): model.generate(input_ids, input_ids=input_ids) def test_generate_too_many_encoder_kwargs(self): """Test that passing redundant inputs results in an exception (`input_ids` and `inputs_embeds` in LLMs)""" article = "I need input_ids to generate" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = AutoModelForSeq2SeqLM.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=10) input_ids = tokenizer(article, return_tensors="pt").input_ids with self.assertRaises(ValueError): model.generate(input_ids=input_ids, inputs_embeds=input_ids) def test_generate_input_features_as_encoder_kwarg(self): """Test that non-`input_ids` main model inputs are correctly handled as positional arguments""" input_features = floats_tensor((3, 80, 60)) model = AutoModelForSpeechSeq2Seq.from_pretrained( "hf-internal-testing/tiny-random-WhisperForConditionalGeneration" ) input_features.to(torch_device) model = model.to(torch_device) output_sequences_kwargs = model.generate(input_features=input_features, max_length=5) output_sequences = model.generate(input_features, max_length=5) output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (3, 5)) def test_generate_encoder_outputs_attention_mask(self): """Test that `generate` can handle attention masks when the encoder outputs are passed""" input_features = floats_tensor((3, 80, 60)) attention_mask = torch.randint(0, 2, input_features.shape).to(torch_device) model = AutoModelForSpeechSeq2Seq.from_pretrained( "hf-internal-testing/tiny-random-WhisperForConditionalGeneration" ) input_features = input_features.to(torch_device) attention_mask = attention_mask.to(torch_device) model = model.to(torch_device) encoder = model.get_encoder() encoder_outputs = encoder(input_features) output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs) output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask) output_sequences_no_mask = output_sequences_no_mask.cpu().numpy() output_sequences_with_mask = output_sequences_with_mask.cpu().numpy() self.assertFalse(np.array_equal(output_sequences_no_mask, output_sequences_with_mask)) def test_eos_token_id_int_and_list_greedy_search(self): """Test that `generate` can handle multiple EOS tokens""" generation_kwargs = { "do_sample": False, "num_beams": 1, } expectation = 13 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 873 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) eos_token_id = [873, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_generate_vision2text_conditioning(self): """Test that `decoder_input_ids` can be used to condition the generation in vision-to-text models""" pixel_values = floats_tensor((2, 3, 30, 30)) conditioning_input = torch.tensor([[10], [10]]) # this should be the 2nd output token, after the BOS token model = AutoModelForVision2Seq.from_pretrained( "hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2" ) pixel_values = pixel_values.to(torch_device) model = model.to(torch_device) conditioning_input = conditioning_input.to(torch_device) # we can condition on decoder_input_ids (expected decoder input) and input_ids (which we pipe internally as # decoder_input_ids, if the encoder is not a model with text input) output_sequences_decoder_input_ids = model.generate( pixel_values, max_length=5, decoder_input_ids=conditioning_input ) output_sequences_input_ids = model.generate(pixel_values, max_length=5, input_ids=conditioning_input) output_sequences_decoder_input_ids = output_sequences_decoder_input_ids.cpu().numpy() output_sequences_input_ids = output_sequences_input_ids.cpu().numpy() conditioning_input = conditioning_input.cpu().numpy() self.assertTrue(np.array_equal(output_sequences_decoder_input_ids, output_sequences_input_ids)) self.assertTrue(np.array_equal(output_sequences_decoder_input_ids[:, 1:2], conditioning_input)) @require_read_token @slow @require_torch_accelerator def test_cache_device_map_with_vision_layer_device_map(self): """ Test that the cache device map is correctly set when the vision layer has a device map. Regression test for #36942 """ # gemma 3 uses hybrid cache, which can be compiled -> needs a device map at allocation time model_id = "google/gemma-3-4b-it" # important part of this device map: the `.layers.` pattern is NOT present in the decoder device_map = { "vision_tower.vision_model.embeddings": 0, "vision_tower.vision_model.encoder.layers.0": 0, "vision_tower.vision_model.encoder.layers.1": 0, "vision_tower.vision_model.encoder.layers.2": 0, "vision_tower.vision_model.encoder.layers.3": 0, "vision_tower.vision_model.encoder.layers.4": 0, "vision_tower.vision_model.encoder.layers.5": 0, "vision_tower.vision_model.encoder.layers.6": 0, "vision_tower.vision_model.encoder.layers.7": 0, "vision_tower.vision_model.encoder.layers.8": 0, "vision_tower.vision_model.encoder.layers.9": 0, "vision_tower.vision_model.encoder.layers.10": 0, "vision_tower.vision_model.encoder.layers.11": 0, "vision_tower.vision_model.encoder.layers.12": 0, "vision_tower.vision_model.encoder.layers.13": 0, "vision_tower.vision_model.encoder.layers.14": "cpu", "vision_tower.vision_model.encoder.layers.15": "cpu", "vision_tower.vision_model.encoder.layers.16": "cpu", "vision_tower.vision_model.encoder.layers.17": "cpu", "vision_tower.vision_model.encoder.layers.18": "cpu", "vision_tower.vision_model.encoder.layers.19": "cpu", "vision_tower.vision_model.encoder.layers.20": "cpu", "vision_tower.vision_model.encoder.layers.21": "cpu", "vision_tower.vision_model.encoder.layers.22": "cpu", "vision_tower.vision_model.encoder.layers.23": "cpu", "vision_tower.vision_model.encoder.layers.24": "cpu", "vision_tower.vision_model.encoder.layers.25": "cpu", "vision_tower.vision_model.encoder.layers.26": "cpu", "vision_tower.vision_model.post_layernorm": "cpu", "multi_modal_projector": "cpu", "language_model": "cpu", } model = AutoModelForImageTextToText.from_pretrained( model_id, device_map=device_map, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(["This is a text input"], return_tensors="pt").to(model.device) # If the generate doesn't infer the DECODER device map correctly, this will fail _ = model.generate(**inputs, max_new_tokens=2, do_sample=False) @require_torch_accelerator def test_cpu_offload_doesnt_compile(self): """Test that CPU offload doesn't trigger compilation""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") tokenized_inputs = tokenizer(["Hello world"], return_tensors="pt") generate_kwargs = {"max_new_tokens": 3, "cache_implementation": "static"} # Sanity check: if we don't specify a device map, the model will get compiled model_gpu = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map="auto" ) input_ids = tokenized_inputs.input_ids.to(model_gpu.device) _ = model_gpu.generate(input_ids, **generate_kwargs) self.assertTrue(hasattr(model_gpu, "_compiled_call")) # If we specify a device map, the model will not be compiled # (as of April 2025, compiling with CPU offload results in a crash) device_map = { "model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": "cpu", "model.norm": "cpu", "lm_head": 0, } model_cpu = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map=device_map ) input_ids = tokenized_inputs.input_ids.to(model_cpu.device) _ = model_cpu.generate(input_ids, **generate_kwargs) self.assertFalse(hasattr(model_cpu, "_compiled_call")) def test_custom_generate_from_argument_in_generate(self): """Tests that the `custom_generate` argument is used when passed to `generate`""" model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model_inputs = tokenizer("Hello, world!", return_tensors="pt").to(model.device) # Note: `transformers-community/custom_generate_example` has a custom decoding method with a `left_padding` # argument (int), which prepends as many pad tokens. gen_out = model.generate( **model_inputs, left_padding=5, max_new_tokens=5, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True, ) text_output = tokenizer.decode(gen_out[0]) self.assertTrue(text_output.startswith("")) # is the pad token def test_custom_generate_from_model_repo_with_custom_generate_code(self): """ Tests that models from model repos containing custom generation code override `generate` with the custom code """ model = AutoModelForCausalLM.from_pretrained( "transformers-community/custom_generate_example", device_map="auto", trust_remote_code=True ) generate_signature = inspect.signature(model.generate) # `left_padding` is a custom argument, doesn't exist in the base `generate` method self.assertTrue(generate_signature.parameters.get("left_padding")) def test_custom_generate_bad_requirements(self): """Tests that we check the `requirements.txt` file from custom generation repos""" model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model_inputs = tokenizer("Hello, world!", return_tensors="pt").to(model.device) with self.assertRaises(ImportError): # Note: `transformers-community/custom_generate_bad_requirements` has a `requirements.txt` with # impossible requirements model.generate( **model_inputs, custom_generate="transformers-community/custom_generate_bad_requirements", trust_remote_code=True, ) def test_custom_generate_requires_trust_remote_code(self): """Tests that `trust_remote_code` is required when using `custom_generate`""" # Case 1: A model from a repo containing custom generation code must be loaded with `trust_remote_code` with self.assertRaises(ValueError): AutoModelForCausalLM.from_pretrained("transformers-community/custom_generate_example", device_map="auto") # Case 2: Using the `custom_generate` argument in `generate` requires `trust_remote_code` if the code is not # local model = AutoModelForCausalLM.from_pretrained( "hf-internal-testing/tiny-random-MistralForCausalLM", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-MistralForCausalLM") model_inputs = tokenizer("Hello, world!", return_tensors="pt").to(model.device) with self.assertRaises(ValueError): model.generate(**model_inputs, custom_generate="transformers-community/custom_generate_example") @require_torch class TokenHealingTestCase(unittest.TestCase): @parameterized.expand( [ ("url", 'The link is