# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.file_utils import cached_property from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch from .test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class PegasusTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = PegasusTokenizer rust_tokenizer_class = PegasusTokenizerFast test_rust_tokenizer = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = PegasusTokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) @cached_property def _large_tokenizer(self): return PegasusTokenizer.from_pretrained("google/pegasus-large") def get_tokenizer(self, **kwargs) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return ("This is a test", "This is a test") def test_mask_tokens_rust_pegasus(self): rust_tokenizer = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) py_tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname) raw_input_str = "Let's see which is the better one It seems like this was important " rust_ids = rust_tokenizer([raw_input_str], return_tensors=None, add_special_tokens=False).input_ids[0] py_ids = py_tokenizer([raw_input_str], return_tensors=None, add_special_tokens=False).input_ids[0] # TODO: (Thom, Patrick) - this fails because the rust tokenizer does not know about the , , and those yet self.assertListEqual(py_ids, rust_ids) def test_large_mask_tokens(self): tokenizer = self._large_tokenizer # masks whole sentence while masks single word raw_input_str = " To ensure a flow of bank resolutions." desired_result = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] ids = tokenizer([raw_input_str], return_tensors=None).input_ids[0] self.assertListEqual(desired_result, ids) def test_large_tokenizer_settings(self): tokenizer = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "" assert tokenizer.model_max_length == 1024 raw_input_str = "To ensure a smooth flow of bank resolutions." desired_result = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] ids = tokenizer([raw_input_str], return_tensors=None).input_ids[0] self.assertListEqual(desired_result, ids) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["", "", "", ""] @require_torch def test_large_seq2seq_truncation(self): src_texts = ["This is going to be way too long." * 150, "short example"] tgt_texts = ["not super long but more than 5 tokens", "tiny"] batch = self._large_tokenizer(src_texts, padding=True, truncation=True, return_tensors="pt") with self._large_tokenizer.as_target_tokenizer(): targets = self._large_tokenizer( tgt_texts, max_length=5, padding=True, truncation=True, return_tensors="pt" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(batch) == 2 # input_ids, attention_mask.