# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT model.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import copy import json import logging import math import os import sys from io import open import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from torch.nn.parameter import Parameter from .file_utils import cached_path from .model_utils import Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_conv1d_layer from .modeling import BertLayerNorm as LayerNorm logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"} PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"} def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path): """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here) """ import re import numpy as np if '.ckpt' in openai_checkpoint_folder_path: openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path) logger.info("Loading weights from {}".format(openai_checkpoint_folder_path)) names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8')) shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8')) offsets = np.cumsum([np.prod(shape) for shape in shapes]) init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)] init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] # This was used when we had a single embedding matrix for positions and tokens # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0) # del init_params[1] init_params = [arr.squeeze() for arr in init_params] try: assert model.tokens_embed.weight.shape == init_params[1].shape assert model.positions_embed.weight.shape == init_params[0].shape except AssertionError as e: e.args += (model.tokens_embed.weight.shape, init_params[1].shape) e.args += (model.positions_embed.weight.shape, init_params[0].shape) raise model.tokens_embed.weight.data = torch.from_numpy(init_params[1]) model.positions_embed.weight.data = torch.from_numpy(init_params[0]) names.pop(0) # Pop position and token embedding arrays init_params.pop(0) init_params.pop(0) for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]): name = name[6:] # skip "model/" assert name[-2:] == ":0" name = name[:-2] name = name.split('/') pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+\d+', m_name): l = re.split(r'(\d+)', m_name) else: l = [m_name] if l[0] == 'g': pointer = getattr(pointer, 'weight') elif l[0] == 'b': pointer = getattr(pointer, 'bias') elif l[0] == 'w': pointer = getattr(pointer, 'weight') else: pointer = getattr(pointer, l[0]) if len(l) >= 2: num = int(l[1]) pointer = pointer[num] try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise try: assert pointer.shape == array.shape except AssertionError as e: e.args += (pointer.shape, array.shape) raise print("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) def swish(x): return x * torch.sigmoid(x) ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu} class OpenAIGPTConfig(PretrainedConfig): """Configuration class to store the configuration of a `OpenAIGPTModel`. """ pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP def __init__( self, vocab_size_or_config_json_file=40478, n_special=0, n_positions=512, n_ctx=512, n_embd=768, n_layer=12, n_head=12, afn="gelu", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, predict_special_tokens=True, **kwargs ): """Constructs OpenAIGPTConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file. n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...) n_positions: Number of positional embeddings. n_ctx: Size of the causal mask (usually same as n_positions). n_embd: Dimensionality of the embeddings and hidden states. n_layer: Number of hidden layers in the Transformer encoder. n_head: Number of attention heads for each attention layer in the Transformer encoder. afn: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. resid_pdrop: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attn_pdrop: The dropout ratio for the attention probabilities. embd_pdrop: The dropout ratio for the embeddings. layer_norm_epsilon: epsilon to use in the layer norm layers initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. predict_special_tokens: should we predict special tokens (when the model has a LM head) """ super(OpenAIGPTConfig, self).__init__(**kwargs) if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.n_special = n_special self.n_ctx = n_ctx self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.afn = afn self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.predict_special_tokens = predict_special_tokens else: raise ValueError( "First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)" ) @property def total_tokens_embeddings(self): return self.vocab_size + self.n_special @property def hidden_size(self): return self.n_embd @property def num_attention_heads(self): return self.n_head @property def num_hidden_layers(self): return self.n_layer class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False): super(Attention, self).__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.output_attentions = config.output_attentions self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.n_head, self.split_size // self.n_head) for head in heads: mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) def _attn(self, q, k, v, head_mask=None): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) # w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights # XD: self.b may be larger than w, so we need to crop it b = self.bias[:, :, : w.size(-2), : w.size(-1)] w = w * b + -1e9 * (1 - b) w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [torch.matmul(w, v)] if self.output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) else: return x.permute(0, 2, 1, 3) def forward(self, x, head_mask=None): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) attn_outputs = self._attn(query, key, value, head_mask) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super(MLP, self).__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = ACT_FNS[config.afn] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super(Block, self).__init__() nx = config.n_embd self.attn = Attention(nx, n_ctx, config, scale) self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon) def forward(self, x, head_mask=None): attn_outputs = self.attn(x, head_mask=head_mask) a = attn_outputs[0] n = self.ln_1(x + a) m = self.mlp(n) h = self.ln_2(n + m) outputs = [h] + attn_outputs[1:] return outputs class OpenAIGPTLMHead(nn.Module): """ Language Model Head for the transformer """ def __init__(self, model_embeddings_weights, config): super(OpenAIGPTLMHead, self).__init__() self.n_embd = config.n_embd self.vocab_size = config.vocab_size self.predict_special_tokens = config.predict_special_tokens embed_shape = model_embeddings_weights.shape self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) self.set_embeddings_weights(model_embeddings_weights) def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True): self.predict_special_tokens = predict_special_tokens embed_shape = model_embeddings_weights.shape self.decoder.weight = model_embeddings_weights # Tied weights def forward(self, hidden_state): lm_logits = self.decoder(hidden_state) if not self.predict_special_tokens: lm_logits = lm_logits[..., :self.vocab_size] return lm_logits class OpenAIGPTMultipleChoiceHead(nn.Module): """ Classifier Head for the transformer """ def __init__(self, config): super(OpenAIGPTMultipleChoiceHead, self).__init__() self.n_embd = config.n_embd self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation self.linear = nn.Linear(config.n_embd, 1) nn.init.normal_(self.linear.weight, std=0.02) nn.init.normal_(self.linear.bias, 0) def forward(self, hidden_states, mc_token_ids=None): """ Extract classification token hidden state and project it using self.linear hidden_state: hidden state of shape (bsz, num_choices, seq_length, hidden_size) mc_token_ids: [optional] index of the classification token, shape (bsz, num_choices) if mc_token_ids=None we take the last token of the sequence as classification token """ if mc_token_ids is None: mc_token_ids = torch.full_like(hidden_states[:, :, :1, :], hidden_states.shape[2] - 1, dtype=torch.long) else: mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1)) # (bsz, num_choices, 1, hidden_size) multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2) # (bsz, num_choices, hidden_size) multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2) multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1) # (bsz, num_choices) return multiple_choice_logits class OpenAIGPTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = OpenAIGPTConfig pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_openai_gpt base_model_prefix = "transformer" def init_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): """ Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name_or_path: either: - a str with the name of a pre-trained model to load selected in the list of: - a path or url to a pretrained model archive containing: . `config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance - a path or url to a pretrained model archive containing: . `config.json` a configuration file for the model . a series of NumPy files containing OpenAI TensorFlow trained weights from_tf: should we load the weights from a locally saved TensorFlow checkpoint cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models *inputs, **kwargs: additional input for the specific OpenAI-GPT class """ num_special_tokens = kwargs.get('num_special_tokens', None) kwargs.pop('num_special_tokens', None) model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs) # Add additional embeddings for special tokens if needed # This step also make sure we are still sharing the output and input embeddings after loading weights model.set_num_special_tokens(num_special_tokens) return model class OpenAIGPTModel(OpenAIGPTPreTrainedModel): """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training"). OpenAI GPT use a single embedding matrix to store the word and special embeddings. Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]... Special tokens need to be trained during the fine-tuning if you use them. The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function. The embeddings are ordered as follow in the token embeddings matrice: [0, ---------------------- ... -> word embeddings config.vocab_size - 1, ______________________ config.vocab_size, ... -> special embeddings config.vocab_size + config.n_special - 1] ______________________ where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is: total_tokens_embeddings = config.vocab_size + config.n_special You should use the associate indices to index the embeddings. Params: `config`: a OpenAIGPTConfig class instance with the configuration to build a new model `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. This can be used to compute head importance metrics. Default: False Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[ `position_ids`: an optional torch.LongTensor with the same shape as input_ids with the position indices (selected in the range [0, config.n_positions - 1[. `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids You can use it to add a third type of embedding to each input token in the sequence (the previous two being the word and position embeddings). The input, position and token_type embeddings are summed inside the Transformer before the first self-attention block. `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. Outputs: `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings) as torch.FloatTensor of size [batch_size, sequence_length, hidden_size] (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids) Example usage: ```python # Already been converted into BPE token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) config = modeling_openai.OpenAIGPTConfig() model = modeling_openai.OpenAIGPTModel(config) hidden_states = model(input_ids) ``` """ def __init__(self, config): super(OpenAIGPTModel, self).__init__(config) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd) self.positions_embed = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) block = Block(config.n_ctx, config, scale=True) self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)]) self.apply(self.init_weights) def set_num_special_tokens(self, num_special_tokens=None): " Update input embeddings with new embedding matrice if needed " if num_special_tokens is None or self.config.n_special == num_special_tokens: return # Update config self.config.n_special = num_special_tokens # Build new embeddings and initialize all new embeddings (in particular the special tokens) old_embed = self.tokens_embed self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd) self.tokens_embed.to(old_embed.weight.device) self.init_weights(self.tokens_embed) # Copy word embeddings from the previous weights self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None): if position_ids is None: # This was used when we had a single embedding matrice from position and token embeddings # start = self.config.vocab_size + self.config.n_special # end = start + input_ids.size(-1) # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device) position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.n_layer input_shape = input_ids.size() input_ids = input_ids.view(-1, input_ids.size(-1)) position_ids = position_ids.view(-1, position_ids.size(-1)) inputs_embeds = self.tokens_embed(input_ids) position_embeds = self.positions_embed(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.tokens_embed(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) all_attentions = [] all_hidden_states = [] for i, block in enumerate(self.h): if self.output_hidden_states: all_hidden_states.append(hidden_states.view(*output_shape)) outputs = block(hidden_states, head_mask[i]) hidden_states = outputs[0] if self.output_attentions: all_attentions.append(outputs[1]) # Add last layer if self.output_hidden_states: all_hidden_states.append(hidden_states.view(*output_shape)) outputs = [hidden_states.view(*output_shape)] if self.output_hidden_states: outputs.append(all_hidden_states) if self.output_attentions: outputs.append(all_attentions) return outputs # last hidden state, (all hidden states), (all attentions) class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training"). OpenAI GPT use a single embedding matrix to store the word and special embeddings. Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]... Special tokens need to be trained during the fine-tuning if you use them. The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function. The embeddings are ordered as follow in the token embeddings matrice: [0, ---------------------- ... -> word embeddings config.vocab_size - 1, ______________________ config.vocab_size, ... -> special embeddings config.vocab_size + config.n_special - 1] ______________________ where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is: total_tokens_embeddings = config.vocab_size + config.n_special You should use the associate indices to index the embeddings. Params: `config`: a OpenAIGPTConfig class instance with the configuration to build a new model `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. This can be used to compute head importance metrics. Default: False Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length] were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[ `position_ids`: an optional torch.LongTensor with the same shape as input_ids with the position indices (selected in the range [0, config.n_positions - 1[. `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids You can use it to add a third type of embedding to each input token in the sequence (the previous two being the word and position embeddings). The input, position and token_type embeddings are summed inside the Transformer before the first self-attention block. `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., vocab_size] `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. Outputs: if `lm_labels` is not `None`: Outputs the language modeling loss. else: `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings] (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids) Example usage: ```python # Already been converted into BPE token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) config = modeling_openai.OpenAIGPTConfig() model = modeling_openai.OpenAIGPTLMHeadModel(config) lm_logits = model(input_ids) ``` """ def __init__(self, config): super(OpenAIGPTLMHeadModel, self).__init__(config) self.transformer = OpenAIGPTModel(config) self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config) self.apply(self.init_weights) def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True): """ Update input and output embeddings with new embedding matrice Make sure we are sharing the embeddings """ self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens self.transformer.set_num_special_tokens(num_special_tokens) self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens) def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None): transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) outputs = [lm_logits] + transformer_outputs[1:] if lm_labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = [loss] + outputs return outputs # (loss), lm_logits, (all hidden states), (all attentions) class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training"). OpenAI GPT use a single embedding matrix to store the word and special embeddings. Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]... Special tokens need to be trained during the fine-tuning if you use them. The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function. The embeddings are ordered as follow in the token embeddings matrice: [0, ---------------------- ... -> word embeddings config.vocab_size - 1, ______________________ config.vocab_size, ... -> special embeddings config.vocab_size + config.n_special - 1] ______________________ where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is: total_tokens_embeddings = config.vocab_size + config.n_special You should use the associate indices to index the embeddings. Params: `config`: a OpenAIGPTConfig class instance with the configuration to build a new model `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. This can be used to compute head importance metrics. Default: False Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token indices selected in the range [0, total_tokens_embeddings[ `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence) `position_ids`: an optional torch.LongTensor with the same shape as input_ids with the position indices (selected in the range [0, config.n_positions - 1[. `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids You can use it to add a third type of embedding to each input token in the sequence (the previous two being the word and position embeddings). The input, position and token_type embeddings are summed inside the Transformer before the first self-attention block. `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss is only computed for the labels set in [0, ..., total_tokens_embeddings] `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_choices]. `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. Outputs: if `lm_labels` and `multiple_choice_labels` are not `None`: Outputs a tuple of losses with the language modeling loss and the multiple choice loss. else: a tuple with `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings] `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices] Example usage: ```python # Already been converted into BPE token ids input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]]) # (bsz, number of choice, seq length) mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice) config = modeling_openai.OpenAIGPTConfig() model = modeling_openai.OpenAIGPTDoubleHeadsModel(config) lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids) ``` """ def __init__(self, config): super(OpenAIGPTDoubleHeadsModel, self).__init__(config) self.transformer = OpenAIGPTModel(config) self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config) self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config) self.apply(self.init_weights) def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True): """ Update input and output embeddings with new embedding matrice Make sure we are sharing the embeddings """ self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens self.transformer.set_num_special_tokens(num_special_tokens) self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens) def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, head_mask=None): transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids) outputs = [lm_logits, mc_logits] + transformer_outputs[1:] if mc_labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) outputs = [loss] + outputs if lm_labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = [loss] + outputs return outputs # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)