# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Gemma model.""" import tempfile import unittest import pytest from packaging import version from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaConfig, is_torch_available from transformers.testing_utils import ( is_flaky, require_bitsandbytes, require_flash_attn, require_read_token, require_torch, require_torch_gpu, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification, GemmaModel, ) @require_torch class GemmaModelTester: config_class = GemmaConfig if is_torch_available(): model_class = GemmaModel for_causal_lm_class = GemmaForCausalLM for_sequence_class = GemmaForSequenceClassification for_token_class = GemmaForTokenClassification def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, num_key_value_heads=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope self.head_dim = self.hidden_size // self.num_attention_heads # Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return self.config_class( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, head_dim=self.head_dim, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = self.model_class(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = self.model_class(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = self.for_causal_lm_class(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = self.for_causal_lm_class(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Gemma def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class GemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (GemmaModel, GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification) if is_torch_available() else () ) all_generative_model_classes = (GemmaForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GemmaModel, "text-classification": GemmaForSequenceClassification, "token-classification": GemmaForTokenClassification, "text-generation": GemmaForCausalLM, "zero-shot": GemmaForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False # Need to remove 0.9 in `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.6] # used in `test_torch_compile` _torch_compile_test_ckpt = "google/gemma-2b" # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): self.model_tester = GemmaModelTester(self) self.config_tester = ConfigTester(self, config_class=GemmaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_Gemma_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() print(config) config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = self.model_tester.for_sequence_class(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Gemma_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = self.model_tester.for_sequence_class(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Gemma_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = self.model_tester.for_sequence_class(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Gemma_token_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels) model = self.model_tester.for_token_class(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=token_labels) self.assertEqual( result.logits.shape, (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels), ) @unittest.skip(reason="Gemma buffers include complex numbers, which breaks this test") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Gemma uses GQA on all models so the KV cache is a non standard format") def test_past_key_values_format(self): pass @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_generate_use_cache(self): import torch max_new_tokens = 30 for model_class in self.all_generative_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) # NOTE: Gemma apparently does not support right padding + use_cache with FA2. dummy_attention_mask[:, -1] = 1 model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) # Just test that a large cache works as expected _ = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False, use_cache=True, ) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_equivalence_right_padding(self): self.skipTest(reason="Gemma flash attention does not support right padding") @require_torch_sdpa @require_torch_gpu @slow def test_sdpa_equivalence(self): for model_class in self.all_model_classes: if not model_class._supports_sdpa: self.skipTest(reason="Model does not support SDPA") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_sdpa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa" ) model_sdpa.to(torch_device) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager") model.to(torch_device) dummy_input = inputs_dict[model_class.main_input_name] dummy_input = dummy_input.to(torch_device) outputs = model(dummy_input, output_hidden_states=True) outputs_sdpa = model_sdpa(dummy_input, output_hidden_states=True) logits = outputs.hidden_states[-1] logits_sdpa = outputs_sdpa.hidden_states[-1] # gemma sdpa needs a high tolerance assert torch.allclose(logits_sdpa, logits, atol=3e-3) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @is_flaky() @slow def test_flash_attn_2_equivalence(self): for model_class in self.all_model_classes: if not model_class._supports_flash_attn_2: self.skipTest(reason="Model does not support Flash Attention 2") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model_fa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2" ) model_fa.to(torch_device) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager") model.to(torch_device) dummy_input = inputs_dict[model_class.main_input_name] dummy_input = dummy_input.to(torch_device) outputs = model(dummy_input, output_hidden_states=True) outputs_fa = model_fa(dummy_input, output_hidden_states=True) logits = outputs.hidden_states[-1] logits_fa = outputs_fa.hidden_states[-1] # gemma flash attention 2 needs a high tolerance assert torch.allclose(logits_fa, logits, atol=3e-3) @slow @require_torch_gpu class GemmaIntegrationTest(unittest.TestCase): input_text = ["Hello I am doing", "Hi today"] # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) # Depending on the hardware we get different logits / generations cuda_compute_capability_major_version = None @classmethod def setUpClass(cls): if is_torch_available() and torch.cuda.is_available(): # 8 is for A100 / A10 and 7 for T4 cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0] @require_read_token def test_model_2b_fp16(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) model.generation_config.cache_implementation = "static" tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_read_token def test_model_2b_bf16(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of Khichdi", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_read_token def test_model_2b_eager(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of Khichdi", ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager" ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_torch_sdpa @require_read_token def test_model_2b_sdpa(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of Khichdi", ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa" ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @pytest.mark.flash_attn_test @require_flash_attn @require_read_token def test_model_2b_flash_attn(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music", "Hi today I am going to share with you a very easy and simple recipe of Kaju Kat", ] model = AutoModelForCausalLM.from_pretrained( model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model.to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_bitsandbytes @require_read_token def test_model_2b_4bit(self): model_id = "google/gemma-2b" EXPECTED_TEXTS = [ "Hello I am doing a project and I need to make a 3d model of a house. I have been using", "Hi today I'd like to share with you my experience with the new wattpad wattpad wattpad wattpad wattpad wattpad wattpad", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @unittest.skip(reason="The test will not fit our CI runners") @require_read_token def test_model_7b_fp32(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ "Hello my name is ***** ***** I will be assisting you today. I am sorry to hear about your issue. I will", "Hi,\n\nI have a problem with my 2005 1.6 16", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_read_token def test_model_7b_fp16(self): if self.cuda_compute_capability_major_version == 7: self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).") model_id = "google/gemma-7b" EXPECTED_TEXTS = [ """Hello I am doing a project on a 1999 4.0L 4x4. I""", "Hi today I am going to show you how to make a simple and easy to make a DIY 3D", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_read_token def test_model_7b_bf16(self): if self.cuda_compute_capability_major_version == 7: self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).") model_id = "google/gemma-7b" # Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4. # # Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s, # considering differences in hardware processing and potential deviations in generated text. EXPECTED_TEXTS = { 7: [ """Hello I am doing a project on a 1991 240sx and I am trying to find""", "Hi today I am going to show you how to make a very simple and easy to make a very simple and", ], 8: [ "Hello I am doing a project for my school and I am trying to make a program that will read a .txt file", "Hi today I am going to show you how to make a very simple and easy to make a very simple and", ], 9: [ "Hello I am doing a project for my school and I am trying to get a servo to move a certain amount of degrees", "Hi today I am going to show you how to make a very simple and easy to make DIY light up sign", ], } model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version]) @require_read_token def test_model_7b_fp16_static_cache(self): if self.cuda_compute_capability_major_version == 7: self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).") model_id = "google/gemma-7b" EXPECTED_TEXTS = [ """Hello I am doing a project on a 1999 4.0L 4x4. I""", "Hi today I am going to show you how to make a simple and easy to make a DIY 3D", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to( torch_device ) model.generation_config.cache_implementation = "static" tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_bitsandbytes @require_read_token def test_model_7b_4bit(self): model_id = "google/gemma-7b" EXPECTED_TEXTS = [ "Hello I am doing a project for my school and I am trying to make a program that will take a number and then", "Hi today I am going to talk about the best way to get rid of acne. miniaturing is a very", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @slow @require_torch_gpu @require_read_token def test_compile_static_cache(self): # `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2 # work as intended. See https://github.com/pytorch/pytorch/issues/121943 if version.parse(torch.__version__) < version.parse("2.3.0"): self.skipTest(reason="This test requires torch >= 2.3 to run.") NUM_TOKENS_TO_GENERATE = 40 EXPECTED_TEXT_COMPLETION = [ "Hello I am doing a project on the 1990s and I need to know what the most popular music was in the 1990s. I have looked on the internet and I have found", "Hi today\nI have a problem with my 2007 1.9 tdi 105bhp.\nI have a problem with the engine management light on.\nI have checked the", ] prompts = ["Hello I am doing", "Hi today"] tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", pad_token="", padding_side="right") model = GemmaForCausalLM.from_pretrained("google/gemma-2b", device_map="sequential", torch_dtype=torch.float16) inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device) # Dynamic Cache generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False) dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION[8], dynamic_text) # Both GPU architectures have the same output # Static Cache generated_ids = model.generate( **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static" ) static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text) # Static Cache + compile model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) generated_ids = model.generate( **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static" ) static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text) def test_model_2b_bf16_dola(self): model_id = "google/gemma-2b" # ground truth text generated with dola_layers="low", repetition_penalty=1.2 EXPECTED_TEXTS = [ "Hello I am doing an experiment and need to get the mass of a block. The problem is, it has no scale", "Hi today we have the review for a 2016/2017 season of", ] model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to( torch_device ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate( **inputs, max_new_tokens=20, do_sample=False, dola_layers="low", repetition_penalty=1.2 ) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS)