# bitsandbytes [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) is the easiest option for quantizing a model to 8 and 4-bit. 8-bit quantization multiplies outliers in fp16 with non-outliers in int8, converts the non-outlier values back to fp16, and then adds them together to return the weights in fp16. This reduces the degradative effect outlier values have on a model's performance. 4-bit quantization compresses a model even further, and it is commonly used with [QLoRA](https://hf.co/papers/2305.14314) to finetune quantized LLMs. To use bitsandbytes, make sure you have the following libraries installed: ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` ```bash pip install bitsandbytes>=0.39.0 pip install --upgrade accelerate transformers ``` Now you can quantize a model by passing a `BitsAndBytesConfig` to [`~PreTrainedModel.from_pretrained`] method. This works for any model in any modality, as long as it supports loading with Accelerate and contains `torch.nn.Linear` layers. Quantizing a model in 8-bit halves the memory-usage, and for large models, set `device_map="auto"` to efficiently use the GPUs available: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) model_8bit = AutoModelForCausalLM.from_pretrained( "bigscience/bloom-1b7", quantization_config=quantization_config ) ``` By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter if you want: ```py import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) model_8bit = AutoModelForCausalLM.from_pretrained( "facebook/opt-350m", quantization_config=quantization_config, torch_dtype=torch.float32 ) model_8bit.model.decoder.layers[-1].final_layer_norm.weight.dtype ``` Once a model is quantized to 8-bit, you can't push the quantized weights to the Hub unless you're using the latest version of Transformers and bitsandbytes. If you have the latest versions, then you can push the 8-bit model to the Hub with the [`~PreTrainedModel.push_to_hub`] method. The quantization config.json file is pushed first, followed by the quantized model weights. ```py from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained( "bigscience/bloom-560m", quantization_config=quantization_config ) tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m") model.push_to_hub("bloom-560m-8bit") ``` Quantizing a model in 4-bit reduces your memory-usage by 4x, and for large models, set `device_map="auto"` to efficiently use the GPUs available: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) model_4bit = AutoModelForCausalLM.from_pretrained( "bigscience/bloom-1b7", quantization_config=quantization_config ) ``` By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter if you want: ```py import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) model_4bit = AutoModelForCausalLM.from_pretrained( "facebook/opt-350m", quantization_config=quantization_config, torch_dtype=torch.float32 ) model_4bit.model.decoder.layers[-1].final_layer_norm.weight.dtype ``` If you have `bitsandbytes>=0.41.3`, you can serialize 4-bit models and push them on Hugging Face Hub. Simply call `model.push_to_hub()` after loading it in 4-bit precision. You can also save the serialized 4-bit models locally with `model.save_pretrained()` command. Training with 8-bit and 4-bit weights are only supported for training *extra* parameters. You can check your memory footprint with the `get_memory_footprint` method: ```py print(model.get_memory_footprint()) ``` Quantized models can be loaded from the [`~PreTrainedModel.from_pretrained`] method without needing to specify the `load_in_8bit` or `load_in_4bit` parameters: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("{your_username}/bloom-560m-8bit", device_map="auto") ``` ## 8-bit (LLM.int8() algorithm) Learn more about the details of 8-bit quantization in this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration)! This section explores some of the specific features of 8-bit models, such as offloading, outlier thresholds, skipping module conversion, and finetuning. ### Offloading 8-bit models can offload weights between the CPU and GPU to support fitting very large models into memory. The weights dispatched to the CPU are actually stored in **float32**, and aren't converted to 8-bit. For example, to enable offloading for the [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) model, start by creating a [`BitsAndBytesConfig`]: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) ``` Design a custom device map to fit everything on your GPU except for the `lm_head`, which you'll dispatch to the CPU: ```py device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "lm_head": "cpu", "transformer.h": 0, "transformer.ln_f": 0, } ``` Now load your model with the custom `device_map` and `quantization_config`: ```py model_8bit = AutoModelForCausalLM.from_pretrained( "bigscience/bloom-1b7", device_map=device_map, quantization_config=quantization_config, ) ``` ### Outlier threshold An "outlier" is a hidden state value greater than a certain threshold, and these values are computed in fp16. While the values are usually normally distributed ([-3.5, 3.5]), this distribution can be very different for large models ([-60, 6] or [6, 60]). 8-bit quantization works well for values ~5, but beyond that, there is a significant performance penalty. A good default threshold value is 6, but a lower threshold may be needed for more unstable models (small models or finetuning). To find the best threshold for your model, we recommend experimenting with the `llm_int8_threshold` parameter in [`BitsAndBytesConfig`]: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig model_id = "bigscience/bloom-1b7" quantization_config = BitsAndBytesConfig( llm_int8_threshold=10, ) model_8bit = AutoModelForCausalLM.from_pretrained( model_id, device_map=device_map, quantization_config=quantization_config, ) ``` ### Skip module conversion For some models, like [Jukebox](model_doc/jukebox), you don't need to quantize every module to 8-bit which can actually cause instability. With Jukebox, there are several `lm_head` modules that should be skipped using the `llm_int8_skip_modules` parameter in [`BitsAndBytesConfig`]: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_id = "bigscience/bloom-1b7" quantization_config = BitsAndBytesConfig( llm_int8_skip_modules=["lm_head"], ) model_8bit = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", quantization_config=quantization_config, ) ``` ### Finetuning With the [PEFT](https://github.com/huggingface/peft) library, you can finetune large models like [flan-t5-large](https://huggingface.co/google/flan-t5-large) and [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) with 8-bit quantization. You don't need to pass the `device_map` parameter for training because it'll automatically load your model on a GPU. However, you can still customize the device map with the `device_map` parameter if you want to (`device_map="auto"` should only be used for inference). ## 4-bit (QLoRA algorithm) Try 4-bit quantization in this [notebook](https://colab.research.google.com/drive/1ge2F1QSK8Q7h0hn3YKuBCOAS0bK8E0wf) and learn more about it's details in this [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes). This section explores some of the specific features of 4-bit models, such as changing the compute data type, using the Normal Float 4 (NF4) data type, and using nested quantization. ### Compute data type To speedup computation, you can change the data type from float32 (the default value) to bf16 using the `bnb_4bit_compute_dtype` parameter in [`BitsAndBytesConfig`]: ```py import torch from transformers import BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16) ``` ### Normal Float 4 (NF4) NF4 is a 4-bit data type from the [QLoRA](https://hf.co/papers/2305.14314) paper, adapted for weights initialized from a normal distribution. You should use NF4 for training 4-bit base models. This can be configured with the `bnb_4bit_quant_type` parameter in the [`BitsAndBytesConfig`]: ```py from transformers import BitsAndBytesConfig nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", ) model_nf4 = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=nf4_config) ``` For inference, the `bnb_4bit_quant_type` does not have a huge impact on performance. However, to remain consistent with the model weights, you should use the `bnb_4bit_compute_dtype` and `torch_dtype` values. ### Nested quantization Nested quantization is a technique that can save additional memory at no additional performance cost. This feature performs a second quantization of the already quantized weights to save an addition 0.4 bits/parameter. For example, with nested quantization, you can finetune a [Llama-13b](https://huggingface.co/meta-llama/Llama-2-13b) model on a 16GB NVIDIA T4 GPU with a sequence length of 1024, a batch size of 1, and enabling gradient accumulation with 4 steps. ```py from transformers import BitsAndBytesConfig double_quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, ) model_double_quant = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-13b", quantization_config=double_quant_config) ``` ## Dequantizing `bitsandbytes` models Once quantized, you can dequantize the model to the original precision but this might result in a small quality loss of the model. Make sure you have enough GPU RAM to fit the dequantized model. ```python from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer model_id = "facebook/opt-125m" model = AutoModelForCausalLM.from_pretrained(model_id, BitsAndBytesConfig(load_in_4bit=True)) tokenizer = AutoTokenizer.from_pretrained(model_id) model.dequantize() text = tokenizer("Hello my name is", return_tensors="pt").to(0) out = model.generate(**text) print(tokenizer.decode(out[0])) ```