import math import torch from torch.optim import Optimizer from torch.nn.utils import clip_grad_norm_ def warmup_cosine(x, warmup=0.002): s = 1 if x <= warmup else 0 return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x))) def warmup_constant(x, warmup=0.002): s = 1 if x <= warmup else 0 return s*(x/warmup) + (1-s)*1 def warmup_linear(x, warmup=0.002): s = 1 if x <= warmup else 0 return (s*(x/warmup) + (1-s))*(1-x) SCHEDULES = { 'warmup_cosine':warmup_cosine, 'warmup_constant':warmup_constant, 'warmup_linear':warmup_linear, } class BERTAdam(Optimizer): """Implements Open AI version of Adam algorithm with weight decay fix. """ def __init__(self, params, lr, schedule, warmup, t_total, b1=0.9, b2=0.999, e=1e-6, l2=0, vector_l2=False, max_grad_norm=-1, **kwargs): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0 <= warmup: raise ValueError("Invalid warmup: {}".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {}".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {}".format(b2)) if not 0.0 <= e: raise ValueError("Invalid epsilon value: {}".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, l2=l2, vector_l2=vector_l2, max_grad_norm=max_grad_norm) super(BERTAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) lr.append(lr_scheduled) return lr def to(self, device): """ Move the optimizer state to a specified device""" for state in self.state.values(): state['exp_avg'].to(device) state['exp_avg_sq'].to(device) def initialize_step(self, initial_step): """Initialize state with a defined step (but we don't have stored averaged). Arguments: initial_step (int): Initial step number. """ for group in self.param_groups: for p in group['params']: state = self.state[p] # State initialization state['step'] = initial_step # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['b1'], group['b2'] state['step'] += 1 # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['e']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if (len(p.size()) > 1 or group['vector_l2']) and group['l2'] > 0: p.data.add_(-lr_scheduled * group['l2'], p.data) return loss