# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_repo.py PATH_TO_TRANSFORMERS = "src/transformers" PATH_TO_TESTS = "tests" PATH_TO_DOC = "docs/source/model_doc" # Update this list for models that are not tested with a comment explaining the reason it should not be. # Being in this list is an exception and should **not** be the rule. IGNORE_NON_TESTED = [ "BertLMHeadModel", # Needs to be setup as decoder. "DPREncoder", # Building part of bigger (tested) model. "DPRSpanPredictor", # Building part of bigger (tested) model. "ReformerForMaskedLM", # Needs to be setup as decoder. "T5Stack", # Building part of bigger (tested) model. "TFDPREncoder", # Building part of bigger (tested) model. "TFDPRSpanPredictor", # Building part of bigger (tested) model. "TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?) "TFRobertaForMultipleChoice", # TODO: fix ] # Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't # trigger the common tests. TEST_FILES_WITH_NO_COMMON_TESTS = [ "test_modeling_camembert.py", "test_modeling_flax_bert.py", "test_modeling_flax_roberta.py", "test_modeling_mbart.py", "test_modeling_pegasus.py", "test_modeling_tf_camembert.py", "test_modeling_tf_xlm_roberta.py", "test_modeling_xlm_prophetnet.py", "test_modeling_xlm_roberta.py", ] # Update this list for models that are not documented with a comment explaining the reason it should not be. # Being in this list is an exception and should **not** be the rule. IGNORE_NON_DOCUMENTED = [ "DPREncoder", # Building part of bigger (documented) model. "DPRSpanPredictor", # Building part of bigger (documented) model. "T5Stack", # Building part of bigger (tested) model. "TFDPREncoder", # Building part of bigger (documented) model. "TFDPRSpanPredictor", # Building part of bigger (documented) model. "TFElectraMainLayer", # Building part of bigger (documented) model (should it be a TFPreTrainedModel ?) ] # Update this dict with any special correspondance model name (used in modeling_xxx.py) to doc file. MODEL_NAME_TO_DOC_FILE = { "openai": "gpt.rst", "transfo_xl": "transformerxl.rst", "xlm_prophetnet": "xlmprophetnet.rst", "xlm_roberta": "xlmroberta.rst", "bert_generation": "bertgeneration.rst", "marian": "marian.rst", } # Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and # should **not** be the rule. IGNORE_NON_AUTO_CONFIGURED = [ "DPRContextEncoder", "DPREncoder", "DPRReader", "DPRSpanPredictor", "FlaubertForQuestionAnswering", "FunnelBaseModel", "GPT2DoubleHeadsModel", "OpenAIGPTDoubleHeadsModel", "ProphetNetDecoder", "ProphetNetEncoder", "RagModel", "RagSequenceForGeneration", "RagTokenForGeneration", "T5Stack", "TFDPRContextEncoder", "TFDPREncoder", "TFDPRReader", "TFDPRSpanPredictor", "TFFunnelBaseModel", "TFGPT2DoubleHeadsModel", "TFOpenAIGPTDoubleHeadsModel", "XLMForQuestionAnswering", "XLMProphetNetDecoder", "XLMProphetNetEncoder", "XLNetForQuestionAnswering", ] # This is to make sure the transformers module imported is the one in the repo. spec = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) transformers = spec.loader.load_module() # If some modeling modules should be ignored for all checks, they should be added in the nested list # _ignore_modules of this function. def get_model_modules(): """ Get the model modules inside the transformers library. """ _ignore_modules = [ "modeling_auto", "modeling_encoder_decoder", "modeling_marian", "modeling_mmbt", "modeling_outputs", "modeling_retribert", "modeling_utils", "modeling_flax_utils", "modeling_transfo_xl_utilities", "modeling_tf_auto", "modeling_tf_outputs", "modeling_tf_pytorch_utils", "modeling_tf_utils", "modeling_tf_transfo_xl_utilities", ] modules = [] for attr_name in dir(transformers): if attr_name.startswith("modeling") and attr_name not in _ignore_modules: module = getattr(transformers, attr_name) if inspect.ismodule(module): modules.append(module) return modules def get_models(module): """ Get the objects in module that are models.""" models = [] model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel) for attr_name in dir(module): if "Pretrained" in attr_name or "PreTrained" in attr_name: continue attr = getattr(module, attr_name) if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__: models.append((attr_name, attr)) return models # If some test_modeling files should be ignored when checking models are all tested, they should be added in the # nested list _ignore_files of this function. def get_model_test_files(): """ Get the model test files.""" _ignore_files = [ "test_modeling_common", "test_modeling_encoder_decoder", "test_modeling_marian", "test_modeling_tf_common", ] test_files = [] for filename in os.listdir(PATH_TO_TESTS): if ( os.path.isfile(f"{PATH_TO_TESTS}/{filename}") and filename.startswith("test_modeling") and not os.path.splitext(filename)[0] in _ignore_files ): test_files.append(filename) return test_files # If some doc source files should be ignored when checking models are all documented, they should be added in the # nested list _ignore_modules of this function. def get_model_doc_files(): """ Get the model doc files.""" _ignore_modules = [ "auto", "dialogpt", "retribert", ] doc_files = [] for filename in os.listdir(PATH_TO_DOC): if os.path.isfile(f"{PATH_TO_DOC}/{filename}") and not os.path.splitext(filename)[0] in _ignore_modules: doc_files.append(filename) return doc_files # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class # for the all_model_classes variable. def find_tested_models(test_file): """ Parse the content of test_file to detect what's in all_model_classes""" # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f: content = f.read() all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content) # Check with one less parenthesis if len(all_models) == 0: all_models = re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content) if len(all_models) > 0: model_tested = [] for entry in all_models: for line in entry.split(","): name = line.strip() if len(name) > 0: model_tested.append(name) return model_tested def check_models_are_tested(module, test_file): """ Check models defined in module are tested in test_file.""" defined_models = get_models(module) tested_models = find_tested_models(test_file) if tested_models is None: if test_file in TEST_FILES_WITH_NO_COMMON_TESTS: return return [ f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. " + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file " + "`utils/check_repo.py`." ] failures = [] for model_name, _ in defined_models: if model_name not in tested_models and model_name not in IGNORE_NON_TESTED: failures.append( f"{model_name} is defined in {module.__name__} but is not tested in " + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file." + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`" + "in the file `utils/check_repo.py`." ) return failures def check_all_models_are_tested(): """ Check all models are properly tested.""" modules = get_model_modules() test_files = get_model_test_files() failures = [] for module in modules: test_file = f"test_{module.__name__.split('.')[1]}.py" if test_file not in test_files: failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.") new_failures = check_models_are_tested(module, test_file) if new_failures is not None: failures += new_failures if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def find_documented_classes(doc_file): """ Parse the content of doc_file to detect which classes it documents""" with open(os.path.join(PATH_TO_DOC, doc_file), "r", encoding="utf-8", newline="\n") as f: content = f.read() return re.findall(r"autoclass:: transformers.(\S+)\s+", content) def check_models_are_documented(module, doc_file): """ Check models defined in module are documented in doc_file.""" defined_models = get_models(module) documented_classes = find_documented_classes(doc_file) failures = [] for model_name, _ in defined_models: if model_name not in documented_classes and model_name not in IGNORE_NON_DOCUMENTED: failures.append( f"{model_name} is defined in {module.__name__} but is not documented in " + f"{os.path.join(PATH_TO_DOC, doc_file)}. Add it to that file." + "If this model should not be documented, add its name to `IGNORE_NON_DOCUMENTED`" + "in the file `utils/check_repo.py`." ) return failures def _get_model_name(module): """ Get the model name for the module defining it.""" splits = module.__name__.split("_") # Secial case for transfo_xl if splits[-1] == "xl": return "_".join(splits[-2:]) # Special case for xlm_prophetnet if splits[-1] == "prophetnet" and splits[-2] == "xlm": return "_".join(splits[-2:]) # Secial case for xlm_roberta if splits[-1] == "roberta" and splits[-2] == "xlm": return "_".join(splits[-2:]) # Special case for bert_generation if splits[-1] == "generation" and splits[-2] == "bert": return "_".join(splits[-2:]) return splits[-1] def check_all_models_are_documented(): """ Check all models are properly documented.""" modules = get_model_modules() doc_files = get_model_doc_files() failures = [] for module in modules: model_name = _get_model_name(module) doc_file = MODEL_NAME_TO_DOC_FILE.get(model_name, f"{model_name}.rst") if doc_file not in doc_files: failures.append( f"{module.__name__} does not have its corresponding doc file {doc_file}. " + f"If the doc file exists but isn't named {doc_file}, update `MODEL_NAME_TO_DOC_FILE` " + "in the file `utils/check_repo.py`." ) new_failures = check_models_are_documented(module, doc_file) if new_failures is not None: failures += new_failures if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) def get_all_auto_configured_models(): """ Return the list of all models in at least one auto class.""" result = set() # To avoid duplicates we concatenate all model classes in a set. for attr_name in dir(transformers.modeling_auto): if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING"): result = result | set(getattr(transformers.modeling_auto, attr_name).values()) for attr_name in dir(transformers.modeling_tf_auto): if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING"): result = result | set(getattr(transformers.modeling_tf_auto, attr_name).values()) return [cls.__name__ for cls in result] def check_models_are_auto_configured(module, all_auto_models): """ Check models defined in module are each in an auto class.""" defined_models = get_models(module) failures = [] for model_name, _ in defined_models: if model_name not in all_auto_models and model_name not in IGNORE_NON_AUTO_CONFIGURED: failures.append( f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. " "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file " "`utils/check_repo.py`." ) return failures def check_all_models_are_auto_configured(): """ Check all models are each in an auto class.""" modules = get_model_modules() all_auto_models = get_all_auto_configured_models() failures = [] for module in modules: new_failures = check_models_are_auto_configured(module, all_auto_models) if new_failures is not None: failures += new_failures if len(failures) > 0: raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures)) _re_decorator = re.compile(r"^\s*@(\S+)\s+$") def check_decorator_order(filename): """ Check that in the test file `filename` the slow decorator is always last.""" with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() decorator_before = None errors = [] for i, line in enumerate(lines): search = _re_decorator.search(line) if search is not None: decorator_name = search.groups()[0] if decorator_before is not None and decorator_name.startswith("parameterized"): errors.append(i) decorator_before = decorator_name elif decorator_before is not None: decorator_before = None return errors def check_all_decorator_order(): """ Check that in all test files, the slow decorator is always last.""" errors = [] for fname in os.listdir(PATH_TO_TESTS): if fname.endswith(".py"): filename = os.path.join(PATH_TO_TESTS, fname) new_errors = check_decorator_order(filename) errors += [f"- {filename}, line {i}" for i in new_errors] if len(errors) > 0: msg = "\n".join(errors) raise ValueError( f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}" ) def check_repo_quality(): """ Check all models are properly tested and documented.""" print("Checking all models are properly tested.") check_all_decorator_order() check_all_models_are_tested() print("Checking all models are properly documented.") check_all_models_are_documented() print("Checking all models are in at least one auto class.") check_all_models_are_auto_configured() if __name__ == "__main__": check_repo_quality()