# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Llava-NeXT model.""" import gc import unittest import requests from huggingface_hub import hf_hub_download from transformers import ( AutoProcessor, LlavaNextConfig, LlavaNextForConditionalGeneration, is_torch_available, is_vision_available, ) from transformers.testing_utils import ( require_bitsandbytes, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, ) if is_torch_available(): import torch from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image class LlavaNextVisionText2TextModelTester: def __init__( self, parent, ignore_index=-100, image_token_index=0, projector_hidden_act="gelu", seq_length=7, vision_feature_select_strategy="default", vision_feature_layer=-1, text_config={ "model_type": "llama", "seq_length": 7, "is_training": True, "use_input_mask": True, "use_token_type_ids": False, "use_labels": True, "vocab_size": 99, "hidden_size": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 580, "type_vocab_size": 16, "type_sequence_label_size": 2, "initializer_range": 0.02, "num_labels": 3, "num_choices": 4, "pad_token_id": 1, }, is_training=True, vision_config={ "image_size": 16, "patch_size": 4, "num_channels": 3, "is_training": True, "hidden_size": 32, "projection_dim": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "dropout": 0.1, "attention_dropout": 0.1, "initializer_range": 0.02, }, ): self.parent = parent self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.text_config = text_config self.vision_config = vision_config self.pad_token_id = text_config["pad_token_id"] self.num_hidden_layers = text_config["num_hidden_layers"] self.vocab_size = text_config["vocab_size"] self.hidden_size = text_config["hidden_size"] self.num_attention_heads = text_config["num_attention_heads"] self.is_training = is_training self.batch_size = 3 self.num_channels = 3 self.image_size = 30 self.encoder_seq_length = 95 self.image_grid_pinpoints = [[32, 32]] self.num_image_tokens = 88 self.seq_length = seq_length + self.num_image_tokens def get_config(self): return LlavaNextConfig( text_config=self.text_config, vision_config=self.vision_config, ignore_index=self.ignore_index, image_token_index=self.image_token_index, projector_hidden_act=self.projector_hidden_act, vision_feature_select_strategy=self.vision_feature_select_strategy, vision_feature_layer=self.vision_feature_layer, image_grid_pinpoints=self.image_grid_pinpoints, image_seq_length=self.num_image_tokens, ) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [ self.batch_size, 5, self.vision_config["num_channels"], self.vision_config["image_size"], self.vision_config["image_size"], ] ) config = self.get_config() return config, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 2 attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device) input_ids[input_ids == config.image_token_index] = self.pad_token_id input_ids[:, : self.num_image_tokens] = config.image_token_index inputs_dict = { "pixel_values": pixel_values, "image_sizes": torch.tensor( [[self.vision_config["image_size"], self.vision_config["image_size"]]] * self.batch_size ), "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict def create_and_check_llava_next_model_fp16_forward( self, config, input_ids, pixel_values, attention_mask, image_sizes ): model = LlavaNextForConditionalGeneration(config=config) model.to(torch_device) model.half() model.eval() logits = model( input_ids=input_ids, attention_mask=attention_mask, image_sizes=image_sizes, pixel_values=pixel_values.to(torch.bfloat16), return_dict=True, )["logits"] self.parent.assertFalse(torch.isnan(logits).any().item()) def create_and_check_llava_next_model_fp16_autocast_forward( self, config, input_ids, pixel_values, attention_mask, image_sizes ): config.torch_dtype = torch.float16 model = LlavaNextForConditionalGeneration(config=config) model.to(torch_device) model.eval() with torch.autocast(device_type="cuda", dtype=torch.float16): logits = model( input_ids=input_ids, attention_mask=attention_mask, image_sizes=image_sizes, pixel_values=pixel_values.to(torch.bfloat16), return_dict=True, )["logits"] self.parent.assertFalse(torch.isnan(logits).any().item()) @require_torch class LlavaNextForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): """ Model tester for `LlavaNextForConditionalGeneration`. """ all_model_classes = (LlavaNextForConditionalGeneration,) if is_torch_available() else () all_generative_model_classes = (LlavaNextForConditionalGeneration,) if is_torch_available() else () test_pruning = False test_head_masking = False _is_composite = True def setUp(self): self.model_tester = LlavaNextVisionText2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=LlavaNextConfig, has_text_modality=False) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "image_newline" in name: continue elif param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) input_ids = inputs["input_ids"] del inputs["input_ids"] del inputs["pixel_values"] wte = model.get_input_embeddings() inputs["inputs_embeds"] = wte(input_ids) with torch.no_grad(): model(**inputs) # overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs # while some other models require pixel_values to be present def test_inputs_embeds_matches_input_ids(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) input_ids = inputs["input_ids"] del inputs["input_ids"] del inputs["pixel_values"] inputs_embeds = model.get_input_embeddings()(input_ids) with torch.no_grad(): out_ids = model(input_ids=input_ids, **inputs)[0] out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0] self.assertTrue(torch.allclose(out_embeds, out_ids)) def test_mismatching_num_image_tokens(self): """ Tests that VLMs through an error with explicit message saying what is wrong when number of images don't match number of image tokens in the text. Also we need to test multi-image cases when one prompr has multiple image tokens. """ config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) _ = model(**input_dict) # successfull forward with no modifications # remove one image but leave the image token in text input_dict["pixel_values"] = input_dict["pixel_values"][-1:, ...] input_dict["image_sizes"] = input_dict["image_sizes"][-1:, ...] with self.assertRaises(ValueError): _ = model(**input_dict) # simulate multi-image case by concatenating inputs where each has exactly one image/image-token input_ids = input_dict["input_ids"][:1] pixel_values = input_dict["pixel_values"][:1] image_sizes = input_dict["image_sizes"][:1] input_ids = torch.cat([input_ids, input_ids], dim=0) # one image and two image tokens raise an error with self.assertRaises(ValueError): _ = model(input_ids=input_ids, pixel_values=pixel_values, image_sizes=image_sizes) # two images and two image tokens don't raise an error pixel_values = torch.cat([pixel_values, pixel_values], dim=0) image_sizes = torch.cat([image_sizes, image_sizes], dim=0) _ = model(input_ids=input_ids, pixel_values=pixel_values, image_sizes=image_sizes) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="Feedforward chunking is not yet supported") def test_feed_forward_chunking(self): pass @unittest.skip(reason="CPU offload is not yet supported") def test_cpu_offload(self): pass @unittest.skip(reason="Compile not yet supported because in LLava models") def test_sdpa_can_compile_dynamic(self): pass @unittest.skip(reason="Compile not yet supported because in LLava models") def test_sdpa_can_dispatch_on_flash(self): pass @unittest.skip("FlashAttention only support fp16 and bf16 data type") def test_flash_attn_2_fp32_ln(self): pass @unittest.skip( "VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test" ) def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self): pass @require_torch class LlavaNextForConditionalGenerationIntegrationTest(unittest.TestCase): def setUp(self): self.processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" self.image = Image.open(requests.get(url, stream=True).raw) self.prompt = "[INST] \nWhat is shown in this image? [/INST]" def tearDown(self): gc.collect() torch.cuda.empty_cache() @slow @require_bitsandbytes def test_small_model_integration_test(self): model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True, ) inputs = self.processor(images=self.image, text=self.prompt, return_tensors="pt") # verify inputs against original implementation filepath = hf_hub_download( repo_id="nielsr/test-image", filename="llava_1_6_input_ids.pt", repo_type="dataset", ) original_input_ids = torch.load(filepath, map_location="cpu") # replace -200 by image_token_index (since we use token ID = 32000 for the image token) original_input_ids[original_input_ids == -200] = model.config.image_token_index assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist() filepath = hf_hub_download( repo_id="nielsr/test-image", filename="llava_1_6_pixel_values.pt", repo_type="dataset", ) original_pixel_values = torch.load(filepath, map_location="cpu") assert torch.allclose(original_pixel_values, inputs.pixel_values.half()) # verify single forward pass inputs = inputs.to(torch_device) with torch.no_grad(): output = model(**inputs) expected_slice = torch.tensor( [[-4.7695, -4.5664, -0.2788], [-10.6172, -10.8828, -2.5273], [-6.7383, -7.2422, -0.6694]], dtype=torch.float32, device=torch_device, ) assert torch.allclose(output.logits[0, :3, :3], expected_slice, atol=1e-3) # verify generation output = model.generate(**inputs, max_new_tokens=100) EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart is showing the performance of various models or systems across different metrics or datasets.\n\nThe chart is divided into several sections, each representing a different model or dataset. The axes represent different metrics or datasets, such as "MMM-Vet," "MMM-Bench," "L' # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_batch(self): model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" cats_image = Image.open(requests.get(url, stream=True).raw) inputs = self.processor( images=[self.image, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True, ).to(torch_device) # it should not matter whether two images are the same size or not output = model.generate(**inputs, max_new_tokens=20) EXPECTED_DECODED_TEXT = ['[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays', '[INST] \nWhat is shown in this image? [/INST] The image shows two cats lying on a pink surface, which appears to be a couch or a cush'] # fmt: skip self.assertEqual( self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_unk_token(self): # related to (#29835) model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True, ) prompt_with_unk = "[INST] \nWhat is shown in this image? [/INST]" inputs = self.processor(images=self.image, text=prompt_with_unk, return_tensors="pt") # verify single forward pass inputs = inputs.to(torch_device) with torch.no_grad(): output = model(**inputs) # verify generation output = model.generate(**inputs, max_new_tokens=40) EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart' # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_batch_different_resolutions(self): model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True, ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e" cats_image = Image.open(requests.get(url, stream=True).raw) lowres_img = Image.open(requests.get(lowres_url, stream=True).raw) inputs = self.processor( images=[lowres_img, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True ).to(torch_device) pixel_values = inputs["pixel_values"] # verify pixel values are padded correctly with 0 when one image has more num_patches than the other image_num_patches = [ image_size_to_num_patches( image_size=imsize, grid_pinpoints=model.config.image_grid_pinpoints, patch_size=model.config.vision_config.image_size, ) for imsize in inputs["image_sizes"] ] for pix_val, num_patch in zip(pixel_values, image_num_patches): self.assertTrue(torch.all(pix_val[num_patch:] == 0)) # pad on the right for i in range(num_patch): self.assertFalse(torch.all(pix_val[i : i + 1] == 0)) # no padding expected in any of patches # check loss when labels are passed inputs["labels"] = inputs["input_ids"].clone() with torch.no_grad(): output = model(**inputs) expected_slice = torch.tensor( [[-0.1287, -0.1294, -0.1284], [-0.2744, -0.2698, -0.2671], [-0.1071, -0.1091, -0.1056]], dtype=torch.float32, device=torch_device, ) assert torch.allclose(output.logits[0, -3:, -3:], expected_slice, atol=1e-3) assert torch.allclose(output.loss, torch.tensor(7.0206, device=torch_device), atol=1e-3) # verify generation output = model.generate(**inputs, max_new_tokens=50) EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image shows two deer, likely fawns, in a grassy area with trees in the background. The setting appears to be a forest or woodland, and the photo is taken during what seems to be either dawn or dusk, given' # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_batch_matches_single(self): model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True, ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e" cats_image = Image.open(requests.get(url, stream=True).raw) lowres_img = Image.open(requests.get(lowres_url, stream=True).raw) inputs_batched = self.processor( images=[lowres_img, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True ).to(torch_device) inputs_single = self.processor(images=lowres_img, text=self.prompt, return_tensors="pt", padding=True).to( torch_device ) # verify generation output_batched = model.generate(**inputs_batched, max_new_tokens=50) output_single = model.generate(**inputs_single, max_new_tokens=50) self.assertEqual( self.processor.decode(output_batched[0], skip_special_tokens=True), self.processor.decode(output_single[0], skip_special_tokens=True), ) @slow @require_bitsandbytes def test_padding_side_when_merging_inputs(self): model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True, ) url = "http://images.cocodataset.org/val2017/000000039769.jpg" lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e" cats_image = Image.open(requests.get(url, stream=True).raw) lowres_img = Image.open(requests.get(lowres_url, stream=True).raw) inputs_batched = self.processor( images=[lowres_img, cats_image], text=[self.prompt, self.prompt], return_tensors="pt", padding=True ).to(torch_device) # model is in eval mode by default so we should get pad on the left side # we can check the first hidden-states (aka inputs embeds) # the first element was lo-res image and we expect the first 732 tokens to be all pads with torch.no_grad(): output_eval = model(**inputs_batched, output_hidden_states=True) self.assertTrue((output_eval.hidden_states[0][0, :732, ...] == 0).all().item()) with self.assertLogs("transformers", level="WARNING") as logs: model.padding_side = "left" model.train() with torch.no_grad(): model(**inputs_batched, output_hidden_states=True) self.assertIn("Padding side is set to 'left' but the model is in training mode. For training", logs) with self.assertLogs("transformers", level="WARNING") as logs: model.padding_side = "right" model.eval() with torch.no_grad(): model(**inputs_batched, output_hidden_states=True) self.assertIn("Padding side is set to 'right' but the model is in inference mode. For correct", logs) @slow @require_bitsandbytes def test_expansion_in_processing_multiimage(self): model_id = "llava-hf/llava-v1.6-mistral-7b-hf" model = LlavaNextForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True) processor = AutoProcessor.from_pretrained(model_id) prompt = "USER: \nDescribe the similarity between the two images:\nASSISTANT:" image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) deer_image = Image.open( requests.get( "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e", stream=True, ).raw ) # check processing with expansion of inputs processor.vision_feature_select_strategy = "default" processor.patch_size = 14 inputs_expanded = processor(text=prompt, images=[raw_image, deer_image], return_tensors="pt").to( torch_device, torch.float16 ) self.assertTrue(inputs_expanded.input_ids.shape[-1] == 3969) # check processing without expansion of inputs (legacy behavior) processor.vision_feature_select_strategy = None processor.patch_size = None inputs = processor(text=prompt, images=[raw_image, deer_image], return_tensors="pt").to( torch_device, torch.float16 ) self.assertTrue(inputs.input_ids.shape[-1] == 23) # generate exactly 20 tokens output = model.generate(**inputs, min_new_tokens=20, max_new_tokens=20) output_expanded = model.generate(**inputs_expanded, min_new_tokens=20, max_new_tokens=20) # check that both inputs are handled correctly and generate the same output self.assertListEqual(output_expanded[:, -20:].tolist(), output[:, -20:].tolist()) @slow @require_bitsandbytes def test_expansion_in_processing(self): model_id = "llava-hf/llava-v1.6-mistral-7b-hf" model = LlavaNextForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True) processor = AutoProcessor.from_pretrained(model_id) prompt = "USER: \nDescribe the image:\nASSISTANT:" image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) # check processing with expansion of inputs processor.vision_feature_select_strategy = "default" processor.patch_size = 14 inputs_expanded = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16) self.assertTrue(inputs_expanded.input_ids.shape[-1] == 2356) # check processing without expansion of inputs (legacy behavior) processor.vision_feature_select_strategy = None processor.patch_size = None inputs = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16) self.assertTrue(inputs.input_ids.shape[-1] == 17) # generate exactly 20 tokens output = model.generate(**inputs, min_new_tokens=20, max_new_tokens=20) output_expanded = model.generate(**inputs_expanded, min_new_tokens=20, max_new_tokens=20) # check that both inputs are handled correctly and generate the same output self.assertListEqual(output_expanded[:, -20:].tolist(), output[:, -20:].tolist()) @slow @require_bitsandbytes def test_small_model_integration_test_full_vision_state_selection(self): model = LlavaNextForConditionalGeneration.from_pretrained( "llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True, ) # test that changing `strategy` won't error out model.vision_feature_select_strategy = "full" inputs = self.processor(self.prompt, self.image, return_tensors="pt") # verify generation output = model.generate(**inputs, max_new_tokens=30) EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes' # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, )