# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import require_torch, require_torchvision, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_processing_common import ProcessorTesterMixin, prepare_image_inputs if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamHQProcessor, SamImageProcessor if is_torch_available(): import torch @require_vision @require_torchvision class SamHQProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = SamHQProcessor @classmethod def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = SamImageProcessor() processor = SamHQProcessor(image_processor) processor.save_pretrained(self.tmpdirname) def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor @classmethod def tearDown(self): shutil.rmtree(self.tmpdirname) # Processor tester class can't use ProcessorTesterMixin atm because the processor is atypical e.g. only contains an image processor def prepare_image_inputs(self): """This function prepares a list of PIL images.""" return prepare_image_inputs() def prepare_mask_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ mask_inputs = [np.random.randint(255, size=(30, 400), dtype=np.uint8)] mask_inputs = [Image.fromarray(x) for x in mask_inputs] return mask_inputs def test_tokenizer_defaults_preserved_by_kwargs(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_image_processor_defaults_preserved_by_image_kwargs(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_chat_template_save_loading(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_kwargs_overrides_default_image_processor_kwargs(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_kwargs_overrides_default_tokenizer_kwargs(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_unstructured_kwargs(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_unstructured_kwargs_batched(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_doubly_passed_kwargs(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_structured_kwargs_nested(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_structured_kwargs_nested_from_dict(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_save_load_pretrained_additional_features(self): self.skipTest("SamHQProcessor does not have a tokenizer") def test_image_processor_no_masks(self): image_processor = self.get_image_processor() processor = SamHQProcessor(image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="pt") input_processor = processor(images=image_input, return_tensors="pt") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum().item(), input_processor[key].sum().item(), delta=1e-2) for image in input_feat_extract.pixel_values: self.assertEqual(image.shape, (3, 1024, 1024)) for original_size in input_feat_extract.original_sizes: np.testing.assert_array_equal(original_size, np.array([30, 400])) for reshaped_input_size in input_feat_extract.reshaped_input_sizes: np.testing.assert_array_equal( reshaped_input_size, np.array([77, 1024]) ) # reshaped_input_size value is before padding def test_image_processor_with_masks(self): image_processor = self.get_image_processor() processor = SamHQProcessor(image_processor=image_processor) image_input = self.prepare_image_inputs() mask_input = self.prepare_mask_inputs() input_feat_extract = image_processor(images=image_input, segmentation_maps=mask_input, return_tensors="pt") input_processor = processor(images=image_input, segmentation_maps=mask_input, return_tensors="pt") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum().item(), input_processor[key].sum().item(), delta=1e-2) for label in input_feat_extract.labels: self.assertEqual(label.shape, (256, 256)) @require_torch def test_post_process_masks(self): image_processor = self.get_image_processor() processor = SamHQProcessor(image_processor=image_processor) dummy_masks = [torch.ones((1, 3, 5, 5))] original_sizes = [[1764, 2646]] reshaped_input_size = [[683, 1024]] masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) masks = processor.post_process_masks( dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) # should also work with np dummy_masks = [np.ones((1, 3, 5, 5))] masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size)) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646)) dummy_masks = [[1, 0], [0, 1]] with self.assertRaises(ValueError): masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))