import io import unittest import requests from transformers import FuyuConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_accelerator, slow, torch_device from ...test_modeling_common import ids_tensor, random_attention_mask if is_vision_available(): from PIL import Image if is_torch_available() and is_vision_available(): from transformers import FuyuProcessor if is_torch_available(): import torch from transformers import FuyuForCausalLM # Copied from transformers.tests.llama.test_modelling_llama.LlamaModelTest with Llama->Fuyu class FuyuModelTester: def __init__( self, parent, batch_size=13, seq_length=7, image_size=300, patch_size=30, num_channels=3, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return FuyuConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = FuyuForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = FuyuForCausalLM(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = FuyuForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = FuyuForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch @require_torch_accelerator @slow class FuyuIntegrationTest(unittest.TestCase): # , ModelTesterMixin) """ Currently, all these tests depend on a value of max_tokens_to_generate of 10. """ all_model_classes = ("FuyuForCausalLM") if is_torch_available() else () def setUp(self): self.pretrained_model_name = "adept/fuyu-8b" self.processor = FuyuProcessor.from_pretrained(self.pretrained_model_name) self.model = FuyuForCausalLM.from_pretrained(self.pretrained_model_name) self.bus_image_url = ( "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png" ) self.bus_image_pil = Image.open(io.BytesIO(requests.get(self.bus_image_url).content)) @slow def test_model_8b_chat_greedy_generation_bus_captioning(self): EXPECTED_TEXT_COMPLETION = """A blue bus parked on the side of a road.|ENDOFTEXT|""" text_prompt_coco_captioning = "Generate a coco-style caption.\n" model_inputs_bus_captioning = self.processor(text=text_prompt_coco_captioning, images=self.bus_image_pil) generated_tokens = self.model.generate(**model_inputs_bus_captioning, max_new_tokens=10) text = self.processor.tokenizer.batch_decode(generated_tokens) end_sequence = text[0].split("\x04")[1] clean_sequence = ( end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")] if "|ENDOFTEXT|" in end_sequence else end_sequence ) self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence[1:]) """ @slow @require_torch_accelerator def test_model_8b_chat_greedy_generation_bus_color(self): EXPECTED_TEXT_COMPLETION = "The bus is blue.\n|ENDOFTEXT|" text_prompt_bus_color = "What color is the bus?\n" model_inputs_bus_color = self.processor(text=text_prompt_bus_color, images=self.bus_image_pil) generated_tokens = self.model.generate(**model_inputs_bus_color, max_new_tokens=10) text = self.processor.tokenizer.batch_decode(generated_tokens) end_sequence = text[0].split("\x04")[1] clean_sequence = ( end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")] if "|ENDOFTEXT|" in end_sequence else end_sequence ) self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence) @slow @require_torch_accelerator def test_model_8b_chat_greedy_generation_chart_vqa(self): # fmt: off EXPECTED_TEXT_TOKENS = ["The","life expectancy","at","birth","of male","s in","","20","18","is","","80",".","7",".","\n","|ENDOFTEXT|",] # fmt: on expected_text_completion = " ".join(EXPECTED_TEXT_TOKENS) # TODO make sure the end string matches text_prompt_chart_vqa = "What is the highest life expectancy at birth of male?\n" chart_image_url = ( "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/chart.png" ) chart_image_pil = Image.open(io.BytesIO(requests.get(chart_image_url).content)) model_inputs_chart_vqa = self.processor(text=text_prompt_chart_vqa, images=chart_image_pil) generated_tokens = self.model.generate(**model_inputs_chart_vqa, max_new_tokens=10) text = self.processor.tokenizer.batch_decode(generated_tokens) end_sequence = text[0].split("\x04")[1] clean_sequence = ( end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")] if "|ENDOFTEXT|" in end_sequence else end_sequence ) self.assertEqual(expected_text_completion, clean_sequence) @slow @require_torch_accelerator def test_model_8b_chat_greedy_generation_bounding_box(self): EXPECTED_TEXT_COMPLETION = "\x00194213202244\x01|ENDOFTEXT|" text_prompt_bbox = "When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\\nWilliams" # noqa: E231 bbox_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bbox_sample_image.png" bbox_image_pil = Image.open(io.BytesIO(requests.get(bbox_image_url).content)) model_inputs_bbox = self.processor(text=text_prompt_bbox, images=bbox_image_pil) generated_tokens = self.model.generate(**model_inputs_bbox, max_new_tokens=10) text = self.processor.tokenizer.batch_decode(generated_tokens) end_sequence = text[0].split("\x04")[1] clean_sequence = ( end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")] if "|ENDOFTEXT|" in end_sequence else end_sequence ) self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence) """