# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch CLIP model. """ import inspect import os import tempfile import unittest import requests from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from .test_configuration_common import ConfigTester from .test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import CLIPConfig, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPVisionConfig, CLIPVisionModel from transformers.models.clip.modeling_clip import CLIP_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import CLIPProcessor class CLIPVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = CLIPVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) return config, pixel_values def create_and_check_model(self, config, pixel_values): model = CLIPVisionModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class CLIPVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (CLIPVisionModel,) if is_torch_available() else () test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = CLIPVisionModelTester(self) self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_inputs_embeds(self): # CLIP does not use inputs_embeds pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, torch.nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in CLIP, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # CLIP has a different seq_length image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): pass def test_training_gradient_checkpointing(self): pass # skip this test as CLIPVisionModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as CLIPVisionModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class CLIPTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = CLIPTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) return config, input_ids, input_mask def create_and_check_model(self, config, input_ids, input_mask): model = CLIPTextModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class CLIPTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (CLIPTextModel,) if is_torch_available() else () test_pruning = False test_head_masking = False def setUp(self): self.model_tester = CLIPTextModelTester(self) self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass def test_inputs_embeds(self): # CLIP does not use inputs_embeds pass # skip this test as CLIPTextModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as CLIPTextModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class CLIPModelTester: def __init__(self, parent, is_training=True): self.parent = parent self.text_model_tester = CLIPTextModelTester(parent) self.vision_model_tester = CLIPVisionModelTester(parent) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() config = CLIPConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) return config, input_ids, attention_mask, pixel_values def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): model = CLIPModel(config).to(torch_device).eval() result = model(input_ids, pixel_values, attention_mask) self.parent.assertEqual( result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) ) self.parent.assertEqual( result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "return_loss": True, } return config, inputs_dict @require_torch class CLIPModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (CLIPModel,) if is_torch_available() else () test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = CLIPModelTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # hidden_states are tested in individual model tests def test_hidden_states_output(self): pass # input_embeds are tested in individual model tests def test_inputs_embeds(self): pass # tested in individual model tests def test_retain_grad_hidden_states_attentions(self): pass # CLIPModel does not have input/output embeddings def test_model_common_attributes(self): pass def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # CLIP needs pixel_values traced_model = torch.jit.trace(model, (input_ids, pixel_values)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) @slow def test_model_from_pretrained(self): for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CLIPModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision class CLIPModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "openai/clip-vit-base-patch32" model = CLIPModel.from_pretrained(model_name).to(torch_device) processor = CLIPProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt" ).to(torch_device) # forward pass outputs = model(**inputs) # verify the logits self.assertEqual( outputs.logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.Tensor([[24.5056, 18.8076]]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))