# Image Feature Extraction [[open-in-colab]] Image feature extraction is the task of extracting semantically meaningful features given an image. This has many use cases, including image similarity and image retrieval. Moreover, most computer vision models can be used for image feature extraction, where one can remove the task-specific head (image classification, object detection etc) and get the features. These features are very useful on a higher level: edge detection, corner detection and so on. They may also contain information about the real world (e.g. what a cat looks like) depending on how deep the model is. Therefore, these outputs can be used to train new classifiers on a specific dataset. In this guide, you will: - Learn to build a simple image similarity system on top of the `image-feature-extraction` pipeline. - Accomplish the same task with bare model inference. ## Image Similarity using `image-feature-extraction` Pipeline We have two images of cats sitting on top of fish nets, one of them is generated. ```python from PIL import Image import requests img_urls = ["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.jpeg"] image_real = Image.open(requests.get(img_urls[0], stream=True).raw).convert("RGB") image_gen = Image.open(requests.get(img_urls[1], stream=True).raw).convert("RGB") ``` Let's see the pipeline in action. First, initialize the pipeline. If you don't pass any model to it, the pipeline will be automatically initialized with [google/vit-base-patch16-224](google/vit-base-patch16-224). If you'd like to calculate similarity, set `pool` to True. ```python import torch from transformers import pipeline from accelerate.test_utils.testing import get_backend # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) DEVICE, _, _ = get_backend() pipe = pipeline(task="image-feature-extraction", model_name="google/vit-base-patch16-384", device=DEVICE, pool=True) ``` To infer with `pipe` pass both images to it. ```python outputs = pipe([image_real, image_gen]) ``` The output contains pooled embeddings of those two images. ```python # get the length of a single output print(len(outputs[0][0])) # show outputs print(outputs) # 768 # [[[-0.03909236937761307, 0.43381670117378235, -0.06913255900144577, ``` To get the similarity score, we need to pass them to a similarity function. ```python from torch.nn.functional import cosine_similarity similarity_score = cosine_similarity(torch.Tensor(outputs[0]), torch.Tensor(outputs[1]), dim=1) print(similarity_score) # tensor([0.6043]) ``` If you want to get the last hidden states before pooling, avoid passing any value for the `pool` parameter, as it is set to `False` by default. These hidden states are useful for training new classifiers or models based on the features from the model. ```python pipe = pipeline(task="image-feature-extraction", model_name="google/vit-base-patch16-224", device=DEVICE) outputs = pipe(image_real) ``` Since the outputs are unpooled, we get the last hidden states where the first dimension is the batch size, and the last two are the embedding shape. ```python import numpy as np print(np.array(outputs).shape) # (1, 197, 768) ``` ## Getting Features and Similarities using `AutoModel` We can also use `AutoModel` class of transformers to get the features. `AutoModel` loads any transformers model with no task-specific head, and we can use this to get the features. ```python from transformers import AutoImageProcessor, AutoModel processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") model = AutoModel.from_pretrained("google/vit-base-patch16-224").to(DEVICE) ``` Let's write a simple function for inference. We will pass the inputs to the `processor` first and pass its outputs to the `model`. ```python def infer(image): inputs = processor(image, return_tensors="pt").to(DEVICE) outputs = model(**inputs) return outputs.pooler_output ``` We can pass the images directly to this function and get the embeddings. ```python embed_real = infer(image_real) embed_gen = infer(image_gen) ``` We can get the similarity again over the embeddings. ```python from torch.nn.functional import cosine_similarity similarity_score = cosine_similarity(embed_real, embed_gen, dim=1) print(similarity_score) # tensor([0.6061], device='cuda:0', grad_fn=) ```