# RoBERTa-PreLayerNorm ## Overview The RoBERTa-PreLayerNorm model was proposed in [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. It is identical to using the `--encoder-normalize-before` flag in [fairseq](https://fairseq.readthedocs.io/). The abstract from the paper is the following: *fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs.* Tips: - The implementation is the same as [Roberta](roberta) except instead of using _Add and Norm_ it does _Norm and Add_. _Add_ and _Norm_ refers to the Addition and LayerNormalization as described in [Attention Is All You Need](https://arxiv.org/abs/1706.03762). - This is identical to using the `--encoder-normalize-before` flag in [fairseq](https://fairseq.readthedocs.io/). This model was contributed by [andreasmaden](https://huggingface.co/andreasmaden). The original code can be found [here](https://github.com/princeton-nlp/DinkyTrain). ## RobertaPreLayerNormConfig [[autodoc]] RobertaPreLayerNormConfig ## RobertaPreLayerNormModel [[autodoc]] RobertaPreLayerNormModel - forward ## RobertaPreLayerNormForCausalLM [[autodoc]] RobertaPreLayerNormForCausalLM - forward ## RobertaPreLayerNormForMaskedLM [[autodoc]] RobertaPreLayerNormForMaskedLM - forward ## RobertaPreLayerNormForSequenceClassification [[autodoc]] RobertaPreLayerNormForSequenceClassification - forward ## RobertaPreLayerNormForMultipleChoice [[autodoc]] RobertaPreLayerNormForMultipleChoice - forward ## RobertaPreLayerNormForTokenClassification [[autodoc]] RobertaPreLayerNormForTokenClassification - forward ## RobertaPreLayerNormForQuestionAnswering [[autodoc]] RobertaPreLayerNormForQuestionAnswering - forward ## TFRobertaPreLayerNormModel [[autodoc]] TFRobertaPreLayerNormModel - call ## TFRobertaPreLayerNormForCausalLM [[autodoc]] TFRobertaPreLayerNormForCausalLM - call ## TFRobertaPreLayerNormForMaskedLM [[autodoc]] TFRobertaPreLayerNormForMaskedLM - call ## TFRobertaPreLayerNormForSequenceClassification [[autodoc]] TFRobertaPreLayerNormForSequenceClassification - call ## TFRobertaPreLayerNormForMultipleChoice [[autodoc]] TFRobertaPreLayerNormForMultipleChoice - call ## TFRobertaPreLayerNormForTokenClassification [[autodoc]] TFRobertaPreLayerNormForTokenClassification - call ## TFRobertaPreLayerNormForQuestionAnswering [[autodoc]] TFRobertaPreLayerNormForQuestionAnswering - call ## FlaxRobertaPreLayerNormModel [[autodoc]] FlaxRobertaPreLayerNormModel - __call__ ## FlaxRobertaPreLayerNormForCausalLM [[autodoc]] FlaxRobertaPreLayerNormForCausalLM - __call__ ## FlaxRobertaPreLayerNormForMaskedLM [[autodoc]] FlaxRobertaPreLayerNormForMaskedLM - __call__ ## FlaxRobertaPreLayerNormForSequenceClassification [[autodoc]] FlaxRobertaPreLayerNormForSequenceClassification - __call__ ## FlaxRobertaPreLayerNormForMultipleChoice [[autodoc]] FlaxRobertaPreLayerNormForMultipleChoice - __call__ ## FlaxRobertaPreLayerNormForTokenClassification [[autodoc]] FlaxRobertaPreLayerNormForTokenClassification - __call__ ## FlaxRobertaPreLayerNormForQuestionAnswering [[autodoc]] FlaxRobertaPreLayerNormForQuestionAnswering - __call__